støttet af mælkeafgiftsfonden

Status på internationale aktiviteter vedr. fastlæggelse af kulstofbinding og indregning i klimaopgørelser

Anna Flysjö, Sustainability Manager

Arla Foods

Various dairy related carbon footprint activities the last ten years

Sustainable Dairy Farming Strategy 2020

GOOD RELATIONS

Farms are attractive places to work and natural partners for their communities

INTERACTION WITH NATURE

Farms are working as one with their environment

CLIMATE IMPACT

Emissions from farming are continually reduced

Reduce carbon footprint by 30%

4,533 on farm carbon assessments performed.

The carbon footprint from Arla milk is reduced by 23% since 1990.

Guidelines to calculate environmental/climate impact of products

None includes guidelines on carbon sequestration

Soil carbon sequestration is seen as a mitigation measure

"SOC sequestration by the world's permanent pastures could potentially **offset up to 4% of the global GHG emissions**" (Soussana et al., 2010)

"Thus, based upon the inventory estimates, cropland and grazed land soils stored enough CO2 to **offset about 15% of the total emissions** produced by cropland and grazing land agriculture in the United States." (Lal et al., 2007)

"Carbon sequestration in soil has a finite potential and is **non-permanent**. Soil carbon sequestration is a riskier long-term strategy for climate mitigation than direct emission reduction and can play only a **minor role in closing carbon emission gaps by 2100.**" (Smith 2004)

Soussana, J. F., Tallec, T., & Blanfort, V. (2010). Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. *Animal*, 4(3), 334-350. Lal, R., Follett, R. F., Stewart, B. A., & Kimble, J. M. (2007). Soil carbon sequestration to mitigate climate change and advance food security. *Soil Science*, 172(12), 943-956. Smith, P. (2004). Carbon sequestration in croplands: the potential in Europe and the global context. *European Journal of Agronomy*, 20, 229-236. What's the potential for carbon sequestration to mitigate climate change?

However, getting more carbon into the soils are good for many reasons.

How should it be accounted for?

Project initiated:

Develop guidelines to calculate carbon sequestration for the dairy cattle sector

Companies: Arla Foods, Danone, Fonterra, FrieslandCampina, McDonalds, Nestlé Allied organisations: International Dairy Federation, Global Round Table for Sustainable Beef

Expert workshop 25-26 September 2018

Project aim to finish summer 2019

The guidelines will be a stand alone document and possibly be published by IDF

Background to the project

- All companies in the project have climate strategies/targets.
- All the companies have been doing carbon assessments at farm level for several years.
- Carbon sequestration is not included but we are challenged on this (not least from farmers perspective)
- In December 2017 Arla arranged a seminar on carbon sequestration, and the conclusion was that there was an interest to put more focus on this and get guidelines on how to calculate.

PURPOSE OF THE PROJECT

Establish a carbon sequestration calculation method to be used in Carbon Footprint assessments at farm level.

The ultimate outcome is to have a method that will support and encourage farmers to implement activities and practices that promote carbon sequestration and thereby mitigate climate change.

This project does not aim to look at

- National reporting
- Method around soil carbon measurements
- Invest in new science

Project Approach What's the status at date

- Carbon sequestration is one important topic for climate change.
- Currently there is no consensus on how to account for carbon sequestration.
- Will not invest in new science look at what is out there and what's not.
- We have done a high level review of existing tools and initiatives (the 'Matrix').
- Held a workshop 25-26 September
 - \checkmark What is already out there consensus and gaps
 - ✓ How to include soil carbon changes into carbon assessments
 - \checkmark Gain insight from world experts

WHAT KIND OF METHOD IS NEEDED A method that reflects the actions a farmer implements to promote carbon sequestration to mitigate climate change.

> **Relevant:** recognised and science based **Robust:** follow improvements over time at farm level **Rational:** feasible to integrate in carbon assessments globally

Two dimensions to investigate

Soil

- What practices affect c-seq
- What parameters control these practices

C – Seau

• What models/EF/equations are there

LCA

- What question are we asking will influence how to deal with e.g.
 - ✓ System boundaries
 - ✓ Time perspective
 - ✓ Reference

Outcomes from the workshop

- Great engagement from experts.
- Identified activities to potentially be included.
- A number of workstreams have been established.

What activities should be included Outcomes from workshop, but to be investigated further

- Organic matter to the soil (crop residues, compost, manure, biogas residues)
- Cover crops
- Tillage/reduced tillage/no tillage
- Biochar (to be investigated further)
- Peat soils
- Grazing (?)
- Hedges/trees/forests

Important to remember!

• This is an extremely complex area.

C – Sequ

- We don't expect to have a perfect 'method'.
- We hope this to be one step forward to get guidelines to calculate the c-seq at farm level and support farmers to implement activities that support c-seq.

Thank you!

Questions?

Anna Flysjö, anfls@arlafoods.com