FEED EFFICIENCY AND METHANE EMISSION FROM HOLSTEIN AND JERSEY COWS

Dana Olijhoek, Peter Løvendahl, Samantha Noel, Anne Louise Hellwing, Ole Højberg, Martin Riis Weisbjerg, Peter Lund

RESIDUAL FEED INTAKE

Residual feed intake (RFI)

- Predict DMI based on energy sinks
- RFI = observed DMI predicted DMI

Is an energy-efficient animal low in methane?

- Negative RFI \rightarrow efficient
- Positive RFI \rightarrow inefficient

Observed DMI = μ + b₁*Milk Energy + b2*BW0.75 35 Observed DMI (kg/d) + b₃*∆Body Energy 30 + cohort RFI + RFI 25 20 15 10 20 25 15 30 35 Predicted DMI from milk energy, metabolic BW, body energy change, and cohort

VandeHaar et al. (2016)

EXPERIMENT IN FOULUM

- Do Holstein and Jersey differ in methane production pr kg DMI og ECM?
- Do they respond similar to a given well known methane reducing feeding strategy?
- What is the relationship between RFI and methane?

EXPERIMENT IN FOULUM

- Experimental design: cross-over with back-cross = 3 periods
- RFI defined prior to the experiment

	Holstein	Jersey
No. cows	10	10
No. cows per RFI group	5 high and 5 low RFI	5 high and 5 low RFI
Parity	1-3	1-3
DIM (d)	190±41	184±38
ECM yield (kg)	33.1±8.4	22.4±5.0
BW (kg)	663±71	487±35

EXPERIMENT IN FOULUM

- Diets:
 - Low concentrate (LC):
 - Forage:concentrate of 68:32
 - Starch: 105 g/kg DM
 - High concentrate (HC):
 - Forage:concentrate of 39:61
 - Starch: 218 g/kg DM

FEED CONVERSION EFFICIENCY

6

METHANE PRODUCTION PER KG DMI

METHANE PRODUCTION PER KG ECM (NOT PRODUCTION STUDY)

RELATION BETWEEN RFI AND DMI & RFI AND ECM

RELATION BETWEEN RFI AND METHANE

RELATION BETWEEN RFI AND METHANE

RELATION BETWEEN RFI AND METHANE

RELATION BETWEEN RFI AND NDF & RFI AND A:P RATIO

RUMEN MICROBIAL COMMUNITY – GROUPED ACCORDING TO BREED AND DIET

CONCLUSION

Q: Do Holstein and Jersey differ in methane production pr kg DMI og ECM? A: Jerseys have higher methane per kg DMI than Holsteins, but not per kg ECM

Q: Do they respond similar to a given well known methane reducing feeding strategy? A: Holsteins seems to respond much more than Jerseys pr kg DMI but not pr kg ECM

Q:What is the relationship between RFI and methane?

A: For Holsteins efficient animals seem to have a higher NDF digestibility, A:P ratio, and methane production than inefficient animals. For Jerseys the picture is less clear.

Thank you for your attention!

RELATION BETWEEN RFI AND METHANE PER KG ECM – LITERATURE

Our data (Olijhoek et al., in press)

Marett et al. (2017)

18

RELATION BETWEEN RFI AND METHANE PER KG DMI – ONLY AVAILABLE DATA IN LITERATURE

DELETED SLIDES

FEED CONVERSION EFFICIENCY OF BREEDS

FEED CONVERSION EFFICIENCY OF BREEDS

Problem: does not take body reserves into account

STAGE OF LACTATION IS IMPORTANT

FCE per lactation stage

Early (33-54 DIM) Mid (121-152 DIM) ■ Late (233-247 DIM)

Breed x period: P < 0.001

ADDITIONAL SLIDES

FEED SORTING

RELATION FCE AND METHANE

METHANE PER KG MILK SOLIDS

VFA PROPORTIONS

NO CORRELATION BETWEEN RFI AND FCE

