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Abstract Azole resistance in Aspergillus fumigatus has
been increasingly reported particularly over the last decade.
Two routes of acquisition are described: selection of resis-
tance during long term azole therapy in the clinical setting,
and primary acquisition of resistant isolates from the envi-
ronment due to the considerable use of azole fungicides in
agriculture and for material preservation. Three specific
resistance genotypes have been found in azole naïve
patients. Two of these have also been found in the environ-
ment and are characterized by a tandem repeat in the pro-
moter region of the target gene coupled with point mutation
(s) in CYP51A (TR34/L98H and TR46/Y121F/T289A). In
the third a single target enzyme alteration (G432S) is found.
These resistant “environmental” strains have been detected
in many West-European countries as well as in the Asia-
Pacifics. Noticeably, these two continents account for the
highest fungicide use in the global perspective (37 % and
24 %, respectively). Among the 25 azole fungicides, five
have been associated with the potential to select for the
TR34/L98H genotype; three of these are among those most
frequently used. Although the number of antifungal fungi-
cide compounds and classes available is impressive com-
pared to the armamentarium in human medicine, azoles will
remain the most important group in agriculture due to supe-
rior field performance and significant resistance in fungal
pathogens to other compounds. Hence, further spread of
environmental resistant Aspergillus genotypes may occur

and will depend on the fitness of each resistant phenotype
and the pattern of azole fungicide use.
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Introduction

Aspergillus fumigatus is a ubiquitous saprophytic fungus
associated with a variety of diseases including allergic man-
ifestations and chronic infections in the immunocompetent
population and acute invasive localized or disseminated
aspergillosis in the immunocompromised host. The estimat-
ed burden of disease is 3–500,000 for the acute invasive
infections, 3 million with chronic pulmonary aspergillosis
and 4 million with allergic bronchopulmonary aspergillosis
[1]. Azole antifungal drugs are the cornerstone in the anti-
fungal treatment of aspergillosis due to the clinical superi-
ority of voriconazole for invasive infections and the fact that
this group is the only oral option for patients with allergic or
chronic forms of aspergillosis treated outside the hospital
[2–5]. Itraconazole is often the primary choice for the aller-
gic and chronic aspergillosis, voriconazole is the first line
agent for invasive infection and posaconazole is licensed for
prophylaxis and salvage treatment in the immunocompro-
mised host. Second line options are amphotericin B formu-
lations and echinocandins (Fig. 1) [4, 5].

Azole resistance in Aspergillus spp. may be intrinsic or
acquired. Intrinsic resistance is characteristic for some of the
sibling species of the A. fumigatus that are not easily iden-
tified in the routine laboratory (e.g. A. lentulus and A.
udagawae) and acquired resistance is seen in A. fumigatus
isolates at rates most commonly not exceeding 5 % but with
significant variation (zero to 61 %) depending on geograph-
ical location, case mix and method for resistance detection
[6, 7••, 8].
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Early and appropriate antifungal treatment is associated
with lower failure rates in patients with acute invasive
aspergillosis and not surprisingly azole resistance has been
associated with a poorer outcome [2, 3, 9, 10, 11•]. Often the
diagnosis of azole resistant aspergillosis is difficult or
delayed. This is in part due to cultures having low diagnostic
sensitivity and hence, in many cases no fungal isolate is
available for susceptibility testing. However, even if the
culture is positive, susceptibility testing is unfortunately
not routinely performed at many centres despite recommen-
dations to do so and despite the fact that azole breakpoints
have recently been established [6, 12•, 13, 14••]. Therefore,
understanding of the clinical relevance of azole resistance
and when it should be suspected and tested for is of utmost
importance and the fundamental basis for improving man-
agement of this disease. In this review we attempt to address
azole resistance in Aspergillus with particular focus on the
link between the azole use in agriculture and the risk for
acquiring azole resistant Aspergillus disease in humans.

Azole Resistance in Aspergillus

Azoles inhibit the ergosterol biosynthetic pathway by bind-
ing to its target enzyme lanosterol 14-α demethylase
encoded by the CYP51A gene. This enzyme belongs to the
cytochrome P450 family and is required for converting
lanosterol to ergosterol, an essential component of the fun-
gal cell membrane (Fig. 1). This results in the accumulation
of 14-α methyl sterols and impaired cell membrane integrity
[15, 16]. Multiple mechanisms of acquired azole resistance

in A. fumigatus have been suggested and include: 1) target
gene mutations, 2) target gene up-regulation, 3) up-
regulation of efflux pumps, 4) reduced membrane perme-
ability and 5) other mechanisms (Table 1).

Azole Resistance in Aspergillus Isolates from Azole
Exposed Patients Only

A number of cyp51A mutations have been detected in iso-
lates with wild type azole susceptibility phenotype, whereas
others are associated with mono- or multi-azole resistance
(“hot spot mutations” [13]; Tables 1 and 2)). cyp51A knock-
out mutant data, heterologous transformation analysis, mo-
lecular dynamic simulations and studies on site-directed
mutagenesis, protein folding and homology modelling have
assisted in establishing a role for the gene in azole resistance
[17•, 18, 19, 20•, 21•], and identifying, confirming and
predicting mutations conferring (cross-)resistance [20•,
21•, 22, 23]. Mutational cyp51A hot spot codons such as
G54, G138, M220, Y431, and G448 are considered defi-
nitely involved in azole resistance and have been reported
frequently from multiple centres (Table 2).

None of these mutations, however, are consistently pres-
ent in clinically resistant isolates, and azole resistant isolates
do not always exhibit cyp51A mutations [20•, 24, 25, 26•].
Relatively consistent azole susceptibility profiles have been
described for isolates with hot spot mutations (Table 2).
Most mutations confer itraconazole-resistance (Table 2),
whereas pan-azole resistance typically has been reported in
isolates with G138C or M220K alterations (Table 2).

Fig. 1 Drug targets of
agricultural fungicides (left) and
antifungal agents used in
human medicine for the
treatment of aspergillosis
(right)
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Acquired multi- or pan-azole resistance, where hot spot
mutations have emerged during azole therapy over a period
of less than a year, has been described [11•, 27–30].

Azole-Resistant A. Fumigatus Found in Azole Naïve
Patients

Azole resistant A. fumigatus has been found in azole naïve
patients and has been shown to harbour one of three different
resistance mechanisms: 1) a 34 bp tandem repeat (TR34) in
the CYP51A promoter region coupled with a L98H substitu-
tion in the CYP51A gene, 2) a 46 bp tandem repeat (TR46)
coupled with Y121F/T289A substitutions in the CYP51A
gene, or 3) a G432S substitution in the CYP51A gene. Of
particular interest is the TR34/L98H genotype, which was
initially detected at a Dutch centre in 12/13 itraconazole-
resistant patient isolates [31••]; this mutation was subse-
quently found in the vast majority of itraconazole-
resistant isolates from other Dutch centres [20•, 32] and
associated with an up-regulation of the target enzyme
level (mediated by the tandem repeat) and by decreased

affinity for azoles (mediated by the substitution) in combi-
nation leading to the pan azole resistant phenotype [21•].
Using site-directed mutagenesis, Snelders et al. [21•] showed
that the multi-azole resistant phenotype could not be induced
exclusively by introducing either the TR34 or L98H mutation,
indicating that the multi-azole resistant phenotype associated
with L98H is dependent on the TR34 in the promoter region.

Link to the Agricultural Use of Azoles

Dominance of a single resistance mechanism as the one
observed in the Netherlands is difficult to explain by resis-
tance development in individual azole-treated patients, since
a wide array of different resistance mechanisms is normally
found in patients with resistance after long term treatment
[11•, 26•, 33••]. Apart from being associated with multi-
azole resistance in clinical isolates from azole naïve as well
as exposed patients [31••, 33••, 34•, 35•], TR34/L98H has
also been found in azole resistant, environmental isolates in
Denmark and The Netherlands [32, 36•]. This raised the
hypothesis that azole resistant patient isolates may not only

Table 1 A summary of currently described azole resistance mechanisms in clinical isolates of A. fumigatus

Azole resistance mechanism Description Reference

cyp51A mutations Azoles are directed against the enzyme lanosterol 14-α demethylase (CYP51A)
required to convert lanosterol to ergosterol. Blocked access of the substrate
lanosterol results in buildup of toxic sterol intermediates and fungal growth
arrest. Mutations in CYP51A may decrease azole target affinity.

[15, 101, 102]

Target gene upregulation Increased expression of CYP51A has been documented with and without tandem
repeats in the promoter region.

[22, 24, 32, 42••, 103]

A mutation (P88L) in the CCAAT-binding transcription factor complex subunit
HapE was associated with azole resistance in clinical isolates with upregulation
of the target enzyme production but wildtype CYP51A. As Hap is a transcription
factor complex, the increased resistance might be due to a gain of function
mutation if the mutated Hap complex binds to a CCAAT-box in the promoter
region of CYP51A and induces the expression of the gene.

Camps et al., (submitted)

An Aft1 transposon found inserted 370 base pairs upstream of the start codon of
CYP51A may modulate CYP51A expression

[17•]

Upregulation of efflux pumps Upregulation of efflux pumps decreases the intracellular concentration of
antifungals. Efflux pumps consist of two superfamilies: ATP binding cassette
(ABC) and the major facilitator (MF) transporters. Increased expression of
genes encoding ABCs and MFs has been found in clinical azole resistant
isolates and in laboratory mutants with induced resistance.

[104–108]

Reduced membrane permeability Reduced membrane permeability results in decreased penetration of the drug. [109]

Other Cholesterol import as compensation for ergosterol depletion caused by triazole
therapy

[110]

A. fumigatus can produce an extracellular hydrophobic matrix with typical
characteristics of a biofilm in vitro on bronchial epithelia, and in vivo in
aspergilloma, as well as in invasive pulmonary aspergillosis. The biofilm may
render the isolate resistant to antifungal agents, including azoles.

[111–113]

Loss of SrbA, a sterol regulatory element-binding protein homologue in
A. fumigatus, results in susceptibility to fluconazole, an azole to which
A. fumigatus is intrinsically resistant, and the protein may indirectly mediate
resistance to azoles.

[45]

Loss of Unfolded Protein Response function detected in ΔhacA mutants
enhances susceptibility to antifungal drugs.

[114]
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Table 2 cyp51A alterations found in A. fumigatus with and without azole resistance or reduced susceptibility

Codon Amino acid substitution
(non-synonymous and
synonymous)

Azole phenotype Reference

ITZ POS VOR

Hotspot mutations (mutations
commonly found in azole
resistant isolates and
confirmed by various
analyses (see text for details)

G54 E R S/I/R S [11•, 20•, 25, 27, 98, 104,
115–118]

K R NA NA [104]

R R R S [11•, 25, 28, 104, 106,
115–119]

V R I/R S [11•, 115, 117]

W R R S [20•, 21•, 25, 116, 117,
119, 120]

L98 Ha R S/I/R I/R [7••, 10, 11•, 20•, 22, 23,
32, 33••, 34•, 35•, 36•,
98, 117, 120]

Ib R I S [21•]

Qb R I I [21•]

Rb R I I [21•]

Yb R I S [21•]

G138 C R R R [11•, 17•, 20•]

R S S R [118]

M220 I R S/I/R S [20•, 26•, 28, 32, 33••, 98,
115, 117]

K R I/R S/I/R [7••, 11•, 20•, 26•,
33••, 117, 121, 122]

R R I/R S/I [7••, 20•, 26•, 32, 98]

T R S/I/R S/I/R [11•, 115, 117, 122]

V R I/R S [20•, 26•, 115, 117, 122]

W R R NA [26•]

Y431 C I/R S/R S/I/R [11•, 17•, 33••]

G448 S R I/R R [11•, 118]

Mutations present in the
absence of hotspot
mutations and associated
with microbiological and/or
clinical resistance or
reduced susceptibility

N22 D R NA NA [106]

Y121 Fc I I R [42••]

H147 Y R I R [11•]

P216 L R I/R S/I [11•, 27, 120]

F219 I R S/I/R S/I/R [27, 120]

I266* N R I S [25]

A284 Td Reduced
susceptibility

Reduced
susceptibility

Reduced
susceptibility

[26•]

T289 Ac I/S I/S R [42••]

F332** K R I S [123]

S400 I S S I [20•]

E427 G R S/I I/R [11•]

G432 S R S S [43••]

G434 C R R R [11•, 17•]

T440 A R NA NA [106]

Y491 H R NA NA [106]

Mutations present in isolates
with wt susceptibility, in
combination with hotspot
mutations, or present in
both susceptible and
resistant isolates

A9 T [27]

L20 L [106]

F46 Ye [11•, 20•, 23, 26•, 119,
120, 124]

S52 T [20•, 23]

Q88 H [20•]
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result from longstanding azole therapy resulting in selection
for resistant mutants, but be acquired directly from the
environment [23]. Three additional observations support
this notion. First, A. fumigatus isolates of identical micro-
satellite short tandem repeat (STR) genotype with and with-
out azole resistance have been found in individual patients
suggesting selection in vivo. But notably, although patients
harbouring a TR34/L98H as well as a susceptible isolate
have been described, these isolates have never had the same
STR genotype, suggesting “double infection” with unrelated
A. fumigatus isolates and not in vivo selection of resistance
[33••]. Second, five specific azole fungicides (propicona-
zole, bromuconazole, epoxiconazole, difenoconazole and
tebuconazole) show a molecular structure very similar to
the medical triazoles, adopt similar poses while docking the
target enzyme, have activity against wild type A. fumigatus

but not against azole-resistant TR34/L98H-positive isolates
and have all been introduced in The Netherlands between
1990 and 1996 directly preceding the isolation of the first
TR34/L98H in 1998 [23, 37••]. And third, tebuconazole has
been shown to be able to induce tandem repeats in the
promoter region of CYP51A under laboratory conditions
[37••].

In order to fully understand the nature and development
of antifungal resistance, it is necessary to bear the following
factors in mind [38]: Antifungal drug resistance (ADR) is
not transmitted from person to person, 2) ADR is not con-
veyed by lateral gene transfer (as seen among bacteria via
plasmids), 3) ADR has developed rapidly over the past few
years, 4) ADR development under azole pressure (e.g. dur-
ing therapy) presumably occurs during asexual reproduc-
tion, which is much more likely to occur in patients with

Table 2 (continued)

Codon Amino acid substitution
(non-synonymous and
synonymous)

Azole phenotype Reference

ITZ POS VOR

G89 Ge [20•, 26•, 119, 120, 124]

V101 F [33••]

E130 D [20•]

Q141 H [20•, 23]

M172 Ve [11•, 20•, 23, 26•, 119,
120, 124]

N248 Te [11•, 20•, 26•, 120, 124]

L252 L [20•]

D255 Ee [11•, 20•, 26•, 119, 120,
124]

D262 Y [124]

A284 Ad [20•]

S297 T [20•, 22, 23, 32, 33••, 34•]

L339 L [20•]

L358 Ce, Le [20•, 26•, 119, 120, 124]

S393 S [106]

P394 L [106]

E427 G, Ke [11•, 20•, 23, 26•, 119,
120, 124]

C454 Ce [20•, 26•, 119, 120, 124]

F495 I [20•, 22, 23, 32, 33••, 34•]

G497 G [119, 124]

*Annotated as I266 in the reference, however, Genbank consensus has N266

**Annotated as F332 in the reference, however, Genbank consensus has P332
a always coupled to a 34 bp tandem repeat in the promoter region
b laboratory induced
c present together and coupled to a 46 bp tandem repeat in the promoter region
d two mutations have so far been reported in A284: A (susceptible [20•]) and T (resistant/reduced susceptibility [26•])
e reported only together with other mutations of the mutation complex made up by F46Y, G89G, M172V, N248T, D255E, L258C, L353C/L,
L358L, E427K, and C454C and present in isolates with wt and resistant phenotype
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chronic aspergillosis and aspergillomas than in patients with
acute invasive aspergillosis, and 5), insertion of a tandem
repeat acting as a transcriptional enhancer under azole pres-
sure might be introduced more often during sexual repro-
duction requiring the presence of two opposite mating types
which occurs mainly in the environment in A. fumigatus
(teleomorph: Neosartorya fumigate) [39]. These factors
have major implications for the interpretation on reports
on cyp51A mutations, and may also to some extent predict
the pattern of mutations seen in particular cohorts of patients
in particular geographic areas. Hence, the finding of TR34/
L98H mutations in azole resistant clinical isolates in patients
with invasive aspergillosis in a country where this combi-
nation of mutations occurs in the environment may not be
surprising. On the other hand, azole resistant isolates from
patients with chronic aspergillosis and azole therapy may
harbour either different, sporadic cyp51A mutations or the
TR34/L98H genotype, depending on exposure and relative
fitness of competing mutants. Conspicuously, TR34/L98H
was recently found in 55.1 % of culture-negative, PCR
positive sputum samples from patients with allergic bron-
chopulmonary/chronic pulmonary aspergillosis [7••]. If
TR34/L98H mutants are less fit than wild type isolates and
non-TR34/L98H mutants and thus more difficult to culture,
this could explain why they were detectable only by PCR
[7••]. This raises concern, since susceptibility testing is
dependent on cultured isolates. On the other hand, the
TR34/L98H genotype appears to be at least as fit in the
environment as suggested by its clonal expansion across
the Netherlands [40] and virulence studies in the animal
model have failed to detect loss of virulence [41].

Recent reports of additional cyp51A mutants, namely
TR46/Y121F/T289A, found in both clinical and environ-
mental isolates in the Netherlands [42••], and a G432S
mutant in an azole-naïve patient in France [43••] add sup-
port to the hypothesis that azole resistance acquired in the
environment is often but not exclusively associated with
upregulation of CYP51A induced by the presence of a tan-
dem repeat in the promoter region. As described below this
is also the case in fungal plant pathogens. Interestingly, both
the Y121 and the G432 codons in these two resistance
genotypes are also recognised as hot spot codons involved
in azole fungicide resistance in the fungal plant pathogen
Mycospherella graminicola (corresponding to the G460 and
Y137 codons in this organism) [44].

Azole-Resistance in Other Aspergillus Spp.

All Aspergillus spp. are intrinsically resistant to fluconazole
[45]. Whereas wild-type A. fumigatus sensu stricto is sus-
ceptible to other azoles, intrinsic multi/pan-azole resistance
may operate in some morphologically similar species in the

section Fumigati [46]. Thus, azole resistance has been
reported in A. lentulus, which is characterised by primary
CYP51A dependent resistance, and in A. fumigatiaffinis,
Neosartorya pseudofischeri, and A. viridinutans [36•,
46–48]. However, recognition of these cryptic species hap-
pened only recently, and their respective roles in clinical
aspergillosis and potential contribution to resistance prob-
lems remain to be further clarified.

Acquired resistance in other Aspergillus spp. has only
been sporadically investigated and reported. However, since
some of these species (e.g. A. terreus, A. flavus and A.
nidulans) exhibit reduced susceptibility to amphotericin B
[49–56], the importance of azole susceptibility surveillance
of such species should not be underestimated. We recently
demonstrated elevated azole MICs for two A. terreus iso-
lates [57, 58•], one of which had a cyp51A M217I mutation
(equivalent to M220I in A. fumigatus) [58•]. An S240A
alteration in CYP51C was recently associated with clinical
voriconazole-resistance in A. flavus [59•]. Itraconazole re-
sistance in species belonging to the A. niger complex is not
unusual [60, 61] but has not so far been linked to any
particular cyp51A gene mutation [61]. The A. ustus complex
includes A. calidoustus, which has been detected in trans-
plant patients and appears to be intrinsically pan-azole re-
sistant [49]. Resistance profiles of other Aspergillus species
rarely reported as causes of clinical aspergillosis were re-
cently reviewed by van der Linden et al. [62]. Noticeably,
resistance conferred by cyp51A mutations coupled to tan-
dem repeats or in azole naïve patients have so far only been
demonstrated for A. fumigatus isolates, indicating that this
type of resistance acquired in the environment may not yet
be a significant issue except in A. fumigatus.

Control Practice in Agriculture

Fungal plant pathogens cause disease in many agricultural
and horticultural crops compromising yield and quality [63].
Yield losses in the range of 10 % to 30 % are not uncom-
mon. The approach for infection control varies significantly
between countries and over the seasons as many plant
pathogens are crop and climate associated, often with the
most severe attacks in wet seasons. Effective fungicides
have been available for more than 30 years and fungicides
are today commonly used for many crops. Depending on the
crop and local risks for attack the number of treatments may
vary between 5 and 15 times/year in orchard crops and
potatoes to 0–4 in cereal crops (Fig. 2). Fungicide use in
European cereal crops and in wheat in particular is the
largest market for fungicides worldwide [64] (Figs. 2 and 3).

Several classes of fungicides are available for plant pro-
tection including triazoles, strobilurins, morpholines, SDHIs
and chloronitriles (Figs. 1 and 2). Fungicide resistance has
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been reported for the majority of fungicides although less com-
monly for the multisite inhibitors. Concerns related to human
health specifically for the azoles have included the risk of
endocrine side effects following exposure of farmers and green
house workers from preparing spray mixtures or handling azole
treated plants. Recently documented selection for azole resis-
tance in human pathogenic fungi adds to this concern.

Triazoles in Agriculture and for Material Preservation

Azole fungicides constitute the most widely used class of
antifungal agents for the control of fungal plant diseases
(Fig. 2) [64] (personal communication Phillips McDougall,

2010). In agriculture, the first azoles (triadimefon and ima-
zalil) were introduced in 1973 [65], and triazoles have been
widely used since the beginning of 1980. In comparison
with several other groups of fungicides the field perform-
ances of azoles have been relatively stable, suggesting that
emergence of acquired resistance in fungal plant pathogens
has been limited (www.FRAC.info; [66]). Triazoles are also
commonly used for material preservation, but no official
statistical information is available to verify to what extent.
Examples are tebuconazole and propiconazole which are
both used to protect the surface of materials or objects such
as paints, plastics, sealants, wall adhesives, binders, papers,
art works, wood, and for the preservation of fibrous or
polymerised materials, such as leather, rubber, paper and

Fig. 2 Global market-shares
of the various agricultural
fungicides in 2010 (a), and
porportional use of individual
crops (b). Compounds and
classes are indicated as relative
proportions of the total market
value (11,475 mill $) (personal
communication Phillips
McDougall, 2010)

Fig. 3 Countries where A. fumigatus with the TR34/L98H have been reported (dots) and percentage of agricultural fungicide use by continent (3 %
used outside the regions shown) [7••, 8, 11•, 22, 32, 33••, 34•, 35•, 64, 97, 98, 99•]
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textile products. Additionally tebuconazole is used for
preservation and remedial treatment of masonry or other
construction materials (EU regulation).

A total of 25 different triazoles/imidazoles have been
developed for agricultural crops [65]. The products are applied
either as a seed treatment or as foliar applications (sprayed on
growing plants), the latter potentially applying a greater selec-
tion pressure on other fungal pathogens. In addition to protect-
ing against fungal plant pathogens, triazole compounds may
offer plant growth-regulating properties [67] and the ability to
protect plants against various environmental stresses [68, 69].
Each new triazole often offered some new advantages in basic
activity, spectrum, persistency or mobility in the crop. Initially
triadimenol followed by propiconazole and prochloraz were
most commonly used, whereas today these have largely been
replaced by more potent triazoles including tebuconazole,
metconazole, epoxiconazole and prothioconazole. Three of
these are among the five azole fungicides which have been
associated with a high potential for selecting the TR34/L98H
A. fumigatus genotype as described above [37••].

Even though other groups of chemicals e.g. strobilurins and
SDHI fungicides (Fig. 1) [70], have been made available,
problems related to resistance have been so significant that
they are no longer appropriate for control of major diseases in
many crops [71–73]. Hence, azoles alone or combinations of
several agents (typically including at least one azole) are used
in order to limit further selection of resistance [71, 74, 75].

Azole Resistance Mechanism in Fungal Plant Pathogens

Triazole resistance has over the years appeared in several
plant pathogenic fungi. Field resistance was first reported
for the cucumber pathogen Sphaerotheca fuliginea [76], and
subsequently in several other pathogens like Penicillium
digitatum [77], Blumeria graminis f.sp. hordei [78],
Venturia inaequalis [79], Rhynchosporium secalis [80],
and Mycosphaerella graminicola [71].

In several European countries a 10–100 times loss of
susceptibility in vitro ofM. graminicola populations has been
reported over the last 20 years [71, 73, 81, 82]. Four azole
resistance mechanisms have been found, most of which are
identical to those described for A. fumigatus above: 1) point
mutations in CYP51, 2) upregulation of target gene produc-
tion, 3) efflux pumps, and 4) altered sterol biosynthesis; the
latter has been found only in laboratory selected mutants and
thus will not be dealt with any further here.

Point Mutations in Target Gene CYP51

A variety of different point mutations has been found in the
CYP51 gene in plant pathogens but at a relatively low

prevalence. Initially, Blumeria graminis f.sp. hordei and
Uncinula necator with an Y136F alteration were associated
with triazole resistance [83]. Since then, a total of 22 differ-
ent alterations have been verified in M. graminicola [75].
Amino acid sequence alignment of CYP51 from M. grami-
nicola and Candida albicans showed eight identical alter-
ations in azole resistant isolates of the two organisms, while
other eight unique alterations were found specifically for M.
graminicola [75]. Moreover, alterations often accumulate in
a single isolate leading to a stepwise shift in resistance
which is also typical for C. albicans but apparently not for
A. fumigatus [71, 84]. For example the alterations Y459D/C,
G460D, and Y461H have each been linked to low level
resistance, whereas I381V in combination with one of these
resulted in a significantly higher level of resistance to all
azoles [85]. Sequence alignment for M. graminicola and A.
fumigatus identifies three codons found in azole resistant
isolates of both species, namely Y137, Y459 and G460 in
M. graminicola and Y121, Y431 and G432 in A. fumigatus,
respectively [42••, 43••, 44]. Notably, two of these have
been involved in azole resistance in azole naïve patients as
described above [42••, 43••], whereas the third (Y431) was
found in a patient with chronic aspergillosis and bilateral
aspergilloma, and was shown to have been selected for in
vivo [11•] (Fig. 4). The latter observation suggests that some
alterations can be induced by fungicide as well as human
azole use.

The European population of M. graminicola is currently
dominated by two molecular types, one being tebuconazole
susceptible (V136A) and another being tebuconazole resis-
tant (A379G, I381V and ΔY459/G460) [71, 85–87]. This
has had major impact on the field performances of tebuco-
nazole but less impact on other azoles such as epoxicona-
zole and prothioconazole [75].

Over Expression of the CYP51 Gene

Over expression linked to insertions or duplications in the
promoter region of CYP51 resulting in elevated intracellular
levels of the target enzyme has been detected in different
plant pathogens with reduced azole susceptibility [88, 89].
Specifically for M. graminicola an insertion in the promoter
of CYP51 was found coupled with a cyp51 alteration I381V
in several isolates, but the increase in cyp51 expression
remains to be demonstrated experimentally [44].

Role of Efflux Pumps

The simultaneous resistance to a variety of structurally
unrelated toxic compounds is most commonly caused by
upregulation of efflux pumps and was initially described in
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Fig. 4 Alignment of amino acid (AA) sequences of Cyp51 from A. fumigatus (Genbank accession no. AAF32372) and M. graminicola (Genbank
accession no. ACI29117) where alterations have been associated with azole resistance. References: Leroux and Walker, Pest Management Sci

(2011) and as in Table 2. 0 Codons associated with azole resistance in azole exposed patients. 0 Codons associated with azole resistance in

azole naïve patients or in M. graminicola; * associated with a tandem repeat in the promoter region of A. fumigatus
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plant pathogens by De Ward et al. [90]. This has been
studied for azoles in Botrytis cinerea [91], Pyrenophora
tritici repentis [92] andM. graminicola [84]. Pump inhibitors
like e.g. promazine slightly increase the susceptibility to
azoles [87] and the biological potential for efflux resistance
exists in the population of M. graminicola, but the genes
identified have not so far been identified in field isolates [75].

In France, isolates of M. graminicola cross resistant to
azoles, thiolcarbamates and SDHI’s have been reported,
suggesting a combination of mutations in CYP51 and over-
expression of drug efflux transporters to be involved (Figs. 1
and 2) [44]. Azole resistant A. fumigatus without CYP51A
mutations have been found in up to 40 % of the resistant
isolates in the clinical setting [26•]. To what extent efflux
pumps may operate in these isolates and if so to what extent
such may be induced by human azole medication or envi-
ronmental use remains to be understood.

Future Prospects for the Control of Fungal Plant
Pathogens

Although the number of fungicide classes from the perspec-
tives of human medicine appears impressive, many are not
true options for use as single agents either due to resistance
having already emerged or because the risk when used as
single agent is too high. Hence, azoles will remain the most
commonly used class in cereal crops for the foreseeable
future in agriculture. Various initiatives have been undertak-
en by European authorities as well as by the industrial
community (Fungicide Resistance Action Committee,
FRAC) to promote practises that reduce risk of selection
of resistance although consensus as to how has not been
established [82, 93–95]. How this will proceed and to which
extent it may influence selection of resistance in human
pathogens is yet to be seen.

Conclusions

Substantial data today support that azole resistance in A.
fumigatus has been induced during long term azole treat-
ment in individual patients but also occurs in naïve patients
due to the selection for resistant mutants in the environment.
The first azole resistant environmental strain (the TR34/
L98H genotype) has spread throughout The Netherlands
since 1998 and now accounts for between 6 % and 12.8 %
of clinical A. fumigatus in this country illustrating the fitness
and competitiveness of this genotype [96]. Subsequently,
TR34/L98H has also been detected in many other West-
European countries including clinical isolates from Denmark
[33••], Norway [32], the UK [7••, 11•], Belgium [97], France
[97, 98, 99•], and Spain [22], and in the Asia-Pacific region

including India [35•] and China [34•]. Noticeably, West-
Europe and Asia-Pacific represent the regions with the high-
est and second-highest fungicide use in a global perspective,
respectively (Fig. 3) [8, 33••, 35•, 36•]. Additionally, two
more resistant genotypes have recently been reported in
azole naïve patients in France and The Netherlands, and
thus again in West-Europe accounting for 37 % of the global
fungicide market [42••, 43••]. Importantly, susceptibility
testing is not routinely performed in many centres and the
resistance rates reported may therefore very well represent
the tip of the iceberg. We have yet to see if resistance
emerges in S-America where the fungicide use has increased
over the recent years and to which extent the resistance rates
increase further in the parts of the world where it is already
present. Important players are the fitness of the resistant
phenotypes and the pattern of azole fungicide use where
not only amounts but also choice of individual compounds
plays an important role.

Obviously, these changes have clinical implications.
Whereas acquired resistance in clinical practise may be
expected after long term treatment, it is important to realise
that azole susceptibility is not obligate in the azole naïve
patients with aspergillosis. This suggests susceptibility test-
ing should be performed in all patients with Aspergillus
infection requiring antifungal therapy and highlights the
need for better diagnostics improving the culture positivity
rate and establishing alternative options for culture negative
cases like direct detection of prevalent environmental
mutants by PCR [100••]. Moreover, initial combination
therapy may be considered in areas with higher prevalence
of environmental azole resistant isolates for patients with
severe infection. And finally, surveillance studies in both the
clinical setting and the environment should be conducted in
order to provide updated local data on susceptibility rates.
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