

SUEZ Denmark Our history

Present in Denmark since 1980's

Part of SUEZ group with 40,000+ employees globally

Core business is to design and build water and wastewater treatment plants for municipal and industrial clients

Phosphorus removal from wastewater

⇒ BIOLOGICAL REMOVAL

- Requires biological process design targeting biological phosphorus removal
- Due to variability in inlet flow and load there it is difficult to maintain high P-removal at all times only with biological P-removal

⇒ CHEMICAL REMOVAL BY PRECIPITATION

- Simultaneous precipitation in biological process and/or dedicated precipitation after biological process
- To achieve high P-removal rates requires large reactor volume and high dosage of chemicals

MOST WWTPS IN DENMARK WORK WITH A COMBINATION

⇒ IN BOTH CASES, PHOSPHORUS ENDS UP IN THE SLUDGE WITH DIFFERENT AVAILABILITY

Case:

Upgrade of P-removal at Skanderborg Central WWTP, Denmark

FACTS ON THE EXISTING WWTP

Plant design capacity: 42.000 PE

Treated volume 2019: 1.900.000 m³

24.000 m³/d Max. capacity:

504 kg/year Phosphorus limit:

The challenges in Skanderborg

CENTRALIZATION OF WASTEWATER TREATMENT AND URBANIZATION

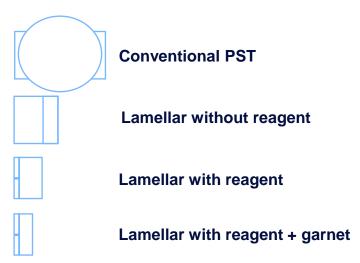
- plans to close small, old plants and expand central WWTP
- Skanderborg is growing → more wastewater
- Existing sand filters were a hydraulic bottleneck
- Limited footprint available for expansion

⇒ SENSITIVE RECIPIENT: FRESHWATER LAKES SURROUNDING SKANDERBORG

 Fixed limit for Phosphorus discharge (max. 1,38 kg/d) will remain unchanged despite increased load of the plant

OVERFLOWS DURING HEAVY RAIN EVENTS

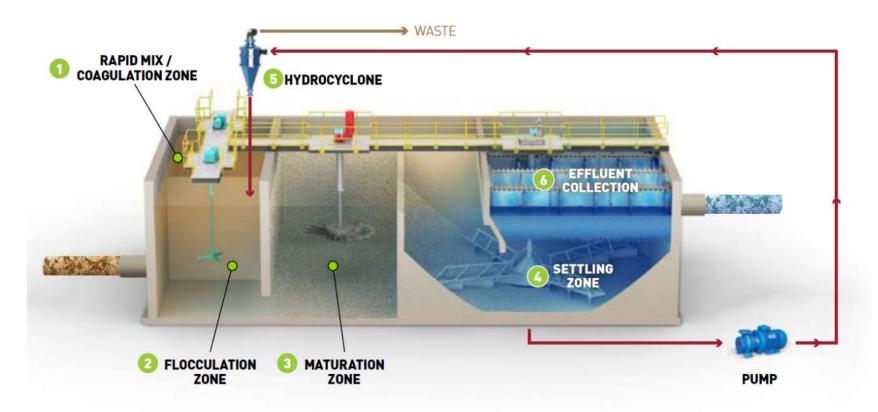
 Climate changes had led to an increased number of events with heavy rain resulting in overflows of untreated wastewater


Why lamellar clarifiers for tertiary and CSO treatment?

⇒ DRIVERS:

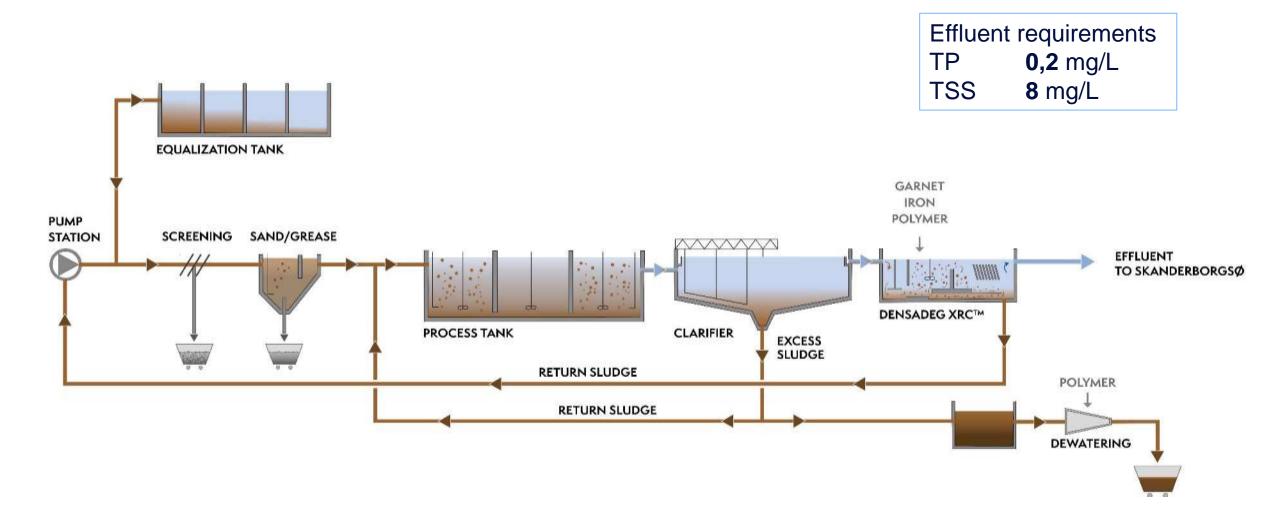
- Footprint
- TOPEX
- Ability to handle large flow variations

Footprint:



Densadeg XRC[™] is 30 times more compact than conventional PST

Densadeg XRC™ – Extreme Rate Clarifier


- **⇒ LATEST DEVELOPMENT OF BALLASTED LAMELLAR CLARIFIER USING HIGH DENSITY BALLAST**
- **⇒ EXTREME LOADING RATES (100-150 M/H) ENSURE VERY COMPACT DESIGN**

YOUTUBE ANIMATION VIDEO: CLICK HERE

The treatment line

Densadeg XRCTM at Skanderborg Central WWTP

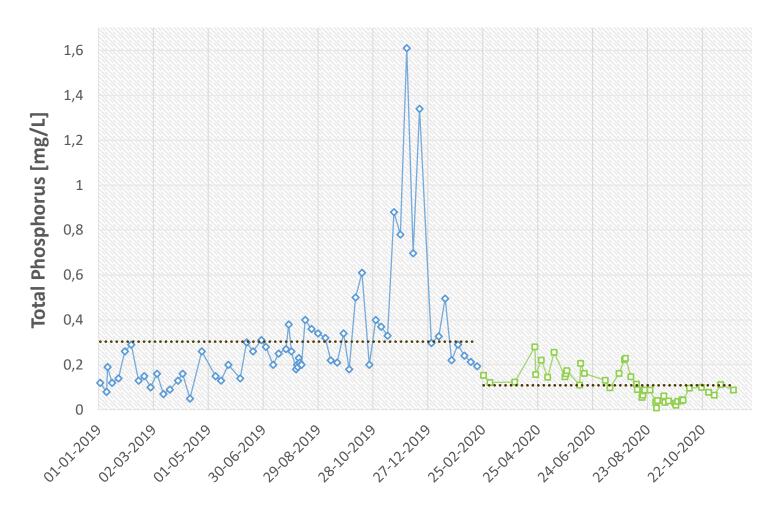
- First Densadeg XRC reference for SUEZ in Europe
- Commissioning done ultimo March 2020

Designed with two lines in parallel to cope with hydraulic peak loads

- DURING DRY WEATHER ONLY ONE LINE IS IN OPERATION
- BOTH LINES IS IN OPERATION DURING RAIN
- THE SECOND LINE CAN BE STARTED UP IN 15 MINUTES MORE
 THAN ENOUGH TIME TO ANTICIPATE INCREASED HYDRAULIC LOAD

Coagulant dosing algorithm based on online P-analyzer

⇒ OBJECTIVES


- Optimize coagulant dosing based on online P-levels in inlet to maximize P-removal
- Reduce the consumption of coagulant (chemicals)

Tertiary treatment: Phosphorus removal

⇒ AVERAGE OUTLET REDUCED FROM 0,30 MG/L TO 0,11 MG/L (24hr flow proportional samples)

- → Without Densadeg
 XRC (sand filters outlet)
- With Densadeg XRC

Summary

- **⇒ ADDITIONAL 200 KG PHOSPHORUS REMOVED PER YEAR**
- **⇒ LESS OVERFLOWS FROM THE WWTP DUE TO IMPROVED HYDRAULIC CAPACITY**
- **⇒ ONLINE PHOSPHORUS SENSOR ENSURES BALANCED**CHEMICALS CONSUMPTION
- ⇒ OPTIMIZATION HAS LED TO IMPROVED TOPEX: 1258 KR PER KG PHOSPHORUS REMOVED BY DENSADEG XRC

mg/L

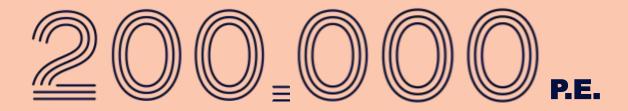
Average outlet Total Phosphorus

mg/L

Average outlet TSS

Case:

Phosphogreen[™] for P-recovery at Marselisborg WWTP



Recovery of Phosphorus from wastewater

Commissioned in 2018

Producing a high-class fertilizer approved by EPA

Struvite production up to 800 kg/day

Struvite is normally a problem in WWTPs as it crystalizes e.g. in pipes and tanks

Pipe with struvite crystallization

By controlled struvite precipitation it is possible to produce a high-class fertilizer essential for agriculture

3 Phosphogreen™ reactors

20% of current world demand of phosphorus could be covered by recovery from wastewater

Recycled phosphorus in form of struvite

