DEFRA Project ACO122

USING FEED PROTEIN MORE EFFICIENTLY AND REDUCING ENVIRONMENTAL IMPACTS OF DAIRY PRODUCTION SYSTEMS - LONG TERM PRODUCTION RESPONSES TO LOWER PROTEIN DIETS

University of Reading, Aberystwyth University, SRUC, Rothamsted Research North Wyke

LIMITLESS IMPACT

NITROGEN USE EFFICIENCY

LATEST

KNOW HOW

MARKETS

8° Sutton

• G 🖨 🖸

Philip Case

14 January 2019

More in

Compliance

Environment

Farm policy

News)

Recommended

Gove's new farm pollution controls: The details and reaction

Farmers face restrictions to tackle ammonia emissions

Farms will face new restrictions on spreading manure and slurry under the government's "world-leading" plan to tackle air pollution.

The government plans to regulate to reduce ammonia emissions from farming, including a requirement to spread slurries and digestate using low-emission spreading equipment (trailing shoe or trailing hose or injection) by 2025.

In the UK, agriculture is responsible for 88% of all ammonia emissions – one-quarter of which comes from ammonia lost in the atmosphere when nitrogen fertiliser is made and spread on farmland.

~25%

NH3

J Moorby

Inevitable N Losses Determining N Use Efficiency for Milk Protein

Source	Faeces N	Urine N	Milk N
Fermentation		35	
Microbial nucleic acids	13	71	
Undigested protein	39		
Endogenous protein	39	19	
Maintenance		13	
Milk production		13	
Total	89	174	198
Maximum N use efficiency			43 %
Reference cow at 40 milk/d with 31.5 g/kg true protein content			

Dijkstra et al., 2013.

VARIATION IN N USE EFFICIENCY IN DAIRY CATTLE

	Milk N efficiency				
	USA (n = 167)		EU (n	EU (n = 287)	
	Low	High	Low	High	
Milk N efficiency	0.22	0.33	0.21	0.32	
DM intake (kg/d)	23.2	23.8	17.9	18.9	
3.5% FCM (I/d)	31.8	38.2	26.8	31.2	
Forage (g/kg DM)	534	526	665	569	
Forage CP (g/kg DM)	179	154	200	148	

Lower (low) and upper (high) quartile for N efficiency

META-ANALYSIS OF N-BALANCE TRIALS

Ammonia

Bill Weiss, OSU

MILK N/INTAKE N VS. N INTAKE

Milk Yield Response - Lower Yielding Cows

EFFECTS OF DIET CRUDE PROTEIN % Reading ON DMI AND FAT CORRECTED MILK YIELD

DIETARY PROTEIN CONCENTRATION AND MILK PRODUCTION

- Olmos Colmenero and Broderick 2006
 - Optimal milk and milk protein yield at 16.5% CP
 - Lucerne/maize silage and high moisture maize grain
 - 48 to 55% NFC!
- Meta-analyses of published data:
 - e.g. NRC, 2001; Huhtanen and Shingfield, 2005;
 Ipharraguerre and Clark, 2005
 - Maximal milk and milk protein yield at 21-23% CP
 - Maximal digestibility of DM, NDF, etc. at 16.5% CP

MAKING METABOLISABLE PROTEIN

Effects of Higher Starch Diets on N Utilization

11% improvement in N milk / N intake with higher starch diets Using Jersey cows Cantalapiedra-Hijar et al., 2013.

DIETARY PROTEIN AND MILK PRODUCTION

- Numerous (!) studies examining the effect of dietary protein supply on animal performance
 - Concerns over environmental impacts → lower protein diets
 - Accompanied by changes to dietary energy supply
 - Fermentable energy and metabolizable energy both important
- Recent interest in lower protein diets with rumen-protected protein or essential amino acids
 - Lysine and methionine (also histidine) considered first limiting
- Short-term, cross over designs, often periods of weeks
 - Dietary adaptation changes to labile protein pool
 - Differential response to dietary protein content
 - Low to high different from high to low
- Long-term studies over an entire lactation(s) lacking

PLASMA HISTIDINE RESPONSE TO A DEFICIT OF MP CONTINUOUS VS CHANGEOVER DESIGN

14

DIET PROTEIN CONCENTRATION AFBI STUDY OVER ONE LACTATION

60:40 Grass:maize silage – 12%, 15%, 18% CP diets

305 day yield

High 9653kg Medium 9089kg Low 7435kg

- AFBI Study Over One Lactation

	Crude protein content of diet (% DM)			Sig.
	11.5	14.5	17.5	
N intake (g / cow / day)	322	445	562	***
N in milk (g / cow / day)	100	132	144	***
N in manure (g / cow / day)	227	300	380	***
N balance (g / cow / day)	-5	13	38	***
Milk N / N intake (g / g)	0.310	0.297	0.256	***

- AFBI Study Over One Lactation

Where To Go With Dietary Protein?

- Reduced manure N per litre milk less land
- Improved biological efficiency of cow
 - Less loss of body reserves
 - Higher fertility?
 - Reduced culling and more longevity?

- 14111140
- Reduced milk yield
- Profitability?
- Fertility loss?

- Maintaining milk yield with lower protein diets by altering diet composition?
 - Energy source, essential amino acid balance etc

EFFICIENCY OF DIETARY N UTILIZATION FOR MILK PROTEIN PRODUCTION

Long term effects???? Defra AC0122

Reading, IBERS, SRUC, Rothamsted

Similar maize silage based diets 215 heifers – 3 lactations 7 year project

DEFRA PROJECT AC0122 WORK PACKAGES

AC0122 - WP2 LACTATION TRIAL Reading

- Measure the long-term effects of incremental reductions in protein concentration of maize silage-based diets for high yielding dairy cows
- 215 heifers at Cedar enrolled at calving
- Fed one of 3 diets Low 14%, Med 16% and High 18% crude protein
- Treatments maintained for 3 lactations
- Managed as for commercial herd except:
 - No grazing and common dry period management
 - No change in diet protein concentration in late lactation
- Culling as for commercial herd
 - Served from day 50 200
 - Failed to conceive cows removed after 305 d lactation

AC0122 - CEDAR LACTATION TRIAL

- First heifer enrolled February 2013
- Enrolment completed 26 September 2014
 - 20 months to enrol 215 heifers
- Last cow lactation completed November 2017
- Cows completing each 305 day lactation:

Lactation 1 completed (207 of 215)

Lactation 2 completed (164 of 179)

Lactation 3 completed (116 of 132)

AC0122 - WP2 LACTATION TRIAL

Measurements:

- Daily milk yield weekly milk composition
- Daily feed intakes feed conversion efficiency
 - Feed composition measured monthly
 - Diet nitrogen composition closely monitored
 - Weekly Kjeldahl analysis in house
- Digestion trials weeks 6, 20, 34
 - 4 cows per treatment
 - faecal and urine nitrogen (and urea) excretion

AC0122 – LACTATION TRIAL TWO CONCENTRATE BLENDS

	Crude	Crude protein concentration		
	14%	16%	18%	
Grass silage	150	150	150	
Maize silage	350	350	350	
Barley straw	15	15	15	
Cracked wheat	115	100	85	
MSBF	40	40	40	
Soy hulls	81	73	65	
Wheat feed	139	93.3	47.6	
Soybean meal	37.5	71.9	106.2	
Rapeseed meal	37.5	71.9	106.2	
Molasses	15	15	15	
Mins & vits	20	20	20	

LACTATION RATIONS

	Crude Protein Concentration		
Item	14%	16%	18%
СР	140	160	180
ME – MJ/kg DM	11.27	11.32	11.38
NDF	352	343	334
ADF	238	237	236
Starch	231	213	195
WSC	49	52	54
EE	45	45	45
Starch + WSC	280	265	249
MPn - % of required	89.9	103.2	115.9
MPe - % of required	95.2	99.9	103.8

DIET INGREDIENT VARIATION

TMR CP VARIATION (UNADJUSTED)

TMR CP VARIATION (ADJUSTED)

0342 Effects of oscillating the crude protein content in dairy cow rations. A. N. Brown*1 and W. P. Weiss²,

1 The Ohio State University, Wooster, 2 Department of Animal Sciences, The Ohio State University, Wooster.

Overfeeding crude protein (CP) is a common practice in the dairy industry to reduce the risk of a loss in milk; however, overfeeding CP increases costs and negatively impacts the environment. We hypothesized that oscillating dietary CP concentrations to equal the average concentration of a diet limited in metabolizable protein (MP) for lactating dairy cows will improve milk protein yield and milk N efficiency because oscillating CP should stimulate nitrogen recycling to the rumen. Twenty-one Holstein dairy cows averaging 123 DIM were randomly assigned to a treatment sequence in seven 3 × 3 Latin Squares with 28-d periods. The control diet contained 16.4% CP (MP allowable milk = 47 kg/d), the low protein diet contained 13.4% CP (MP allowable milk = 31 kg/d), and the oscillating treatment consisted of a diet with 10.3% CP fed for 2 d followed by a diet with 16.4% CP fed for 2 d repeated over the 28 d period to average 13.4% CP. The cows were fed once daily and milked twice daily. Cows on the low protein diet had greater DMI than cows on the oscillating treatment (24.8 kg/d vs. 24.3 kg/d; P = 0.04) but were similar in DMI compared to

DRY MATTER INTAKE

	Low	Med	High
Lac 1	21.3 ^b	21.3 ^b	22.0ª
Lac 2	24.8 ^b	25.5 ^{ab}	26.2ª
Lac 3	25.9 ^c	26.5 ^b	27.3ª

Week of Lactation 3

MILK YIELD

305 DAY MILK YIELD

MILK PROTEIN YIELD

MILK UREA CONCENTRATION

Week of Lactation 3

NITROGEN USE EFFICIENCY

34

	Low	Med	High
Lac 1	31.5ª	29.5 ^b	25.5°
Lac 2	30.7ª	28.4 ^b	24.1 ^c
Lac 3	31.1ª	28.4 ^b	24.3°

Week of lactation

FEED EFFICIENCY

35

	Low	Med	High
Lac 1	1.40ª	1.46 ^b	1.43 ^{ab}
Lac 2	1.34ª	1.40 ^b	1.36 ^{ab}
Lac 3	1.41	1.42	1.40

Week of Lactation 3

URINARY N

SLURRY AMMONIA EMISSION

Potential 3 day emission from daily manure excretion

CONCLUSIONS – CEDAR TRIAL

- Lower protein diets more 'N efficient' but need to consider longer term effects at systems level
 - Economic and environmental implications
- Large variation in diet protein concentrations
 - Implications for precision feeding lower protein diets
- For this study, the 16% crude protein diet was 'optimal' for production - this was by design
- Long-term effects of 'sub-optimal' or excess protein supply need to be assessed (next talk!)

SOME TAKE HOME MESSAGES Reading

- Economic and environmental pressure to reduce dietary protein inputs (especially imported feed proteins)
 - Less environmental impact
 - Risk of reduced milk yield
- Lower protein diets more 'N efficient' but need to consider longer term effects at systems level
 - Energy supply key to maximum N use efficiency
- Precision feeding lower protein diets challenges of variations in feed composition – cows very resilient – long term average important
- The longer term effects of 'sub-optimal' metabolizable protein supply must be assessed relative to the benefits

USING FEED PROTEIN MORE EFFICIENTLY AND REDUCING ENVIRONMENTAL IMPACTS OF DAIRY PRODUCTION SYSTEMS - LONG TERM RESPONSES TO LOWER PROTEIN DIETS

University of Reading, Aberystwyth University, SRUC, Rothamsted Research North Wyke

DIET PROTEIN CONCENTRATION AFBI STUDY OVER ONE LACTATION

60:40 Grass:maize silage – 12%, 15%, 18% CP diets

305 day yield

High 9653kg Medium 9089kg Low 7435kg

- AFBI Study Over One Lactation

- AFBI Study Over One Lactation

	Crude protein content of the diet (DM basis)			
	Low (11.5%)	Medium (14.5%)	High (17.5%)	P value
Pregnancy to 1 st service (%)	34.5	29.7	27.6	ns
Pregnancy to 1 st and 2 nd service (%)	55.4	62.9	52.1	ns
100 day in-calf rate (%)	82.7	66.7	62.1	ns
Conception rate (%)	100	92.9	86.7	ns
Calving interval (days)	398	399	398	ns

Where To Go With Dietary Protein?

- Reduced manure N per litre milk less land
- Improved biological efficiency of cow
 - Less loss of body reserves
 - Higher fertility?
 - Reduced culling and more longevity?

- Reduced milk yield
- Profitability?
- Fertility loss?

AC0122 - WP2 LACTATION TRIAL Reading

- Measure the long-term effects of incremental reductions in protein concentration of maize silage-based diets for high yielding dairy cows
- 215 heifers at Cedar enrolled at calving
- Fed one of 3 diets Low 14%, Med 16% and High 18% crude protein
- Treatments maintained for 3 lactations
- Managed as for commercial herd except:
 - No grazing and common dry period management
 - No change in diet protein concentration in late lactation
- Culling as for commercial herd
 - Served from day 50 200
 - Failed to conceive cows removed after 305 d lactation

AC0122 – LACTATION TRIAL TWO CONCENTRATE BLENDS

	Crude protein concentration			
	14%	16%	18%	
Grass silage	150	150	150	
Maize silage	350	350	350	
Barley straw	15	15	15	
Cracked wheat	115	100	85	
MSBF	40	40	40	
Soy hulls	81	73	65	
Wheat feed	139	93.3	47.6	
Soybean meal	37.5	71.9	106.2	
Rapeseed meal	37.5	71.9	106.2	
Molasses	15	15	15	
Mins & vits	20	20	20	

LACTATION RATIONS

	Crude Protein Concentration		
Item	14%	16%	18%
СР	140	160	180
ME – MJ/kg DM	11.27	11.32	11.38
NDF	352	343	334
ADF	238	237	236
Starch	231	213	195
WSC	49	52	54
EE	45	45	45
Starch + WSC	280	265	249
MPn - % of required	89.9	103.2	115.9
MPe - % of required	95.2	99.9	103.8

AC0122 - WP2 LACTATION TRIAL

Measurements:

- Weekly body weight and BCS
- Milk progesterone through early lactation (90 days)
- Weeks 1, 6, 20, 34 blood metabolic profiles
- Fertility, health and veterinary records
- Culling as for commercial herd
 - Fail to conceive cows removed after 305 d lactation
 - Serve from 50 to 200 d
 - Sire use monitored to insure no treatment bias

AC0122 - CEDAR LACTATION TRIAL

- First heifer enrolled February 2013
- Enrolment completed 26 September 2014
 - 20 months to enrol 215 heifers
- Last cow lactation completed November 2017
- Cows completing each 305 day lactation:

Lactation 1 completed (207 of 215)

Lactation 2 completed (164 of 179)

Lactation 3 completed (116 of 132)

PLASMA METABOLITES: UREA

PLASMA METABOLITES: NEFA

PLASMA METABOLITES: ALBUMIN Reading

NITROGEN USE EFFICIENCY: ANIMAL VARIATION

Animal variation in NUE - Yr1

Animal variation in NUE - Yr2

Animal variation in NUE - Yr3

SHORT TERM FOLLOW ON TRIAL

Diets changed from 16% CP to 14% (Low) or 18% (High) week 0

SHORT TERM FOLLOW ON TRIAL Reading

Diets changed from 16% CP to 14% (Low) or 18% (High) week 0

SHORT TERM FOLLOW ON TRIAL Reading

Diets changed from 16% CP to 14% (Low) or 18% (High) week 0

LAMENESS

MASTITIS

BODYWEIGHT

BODY CONDITION SCORE

	Low	Med	High
Lac 1	3.01 ^{ab}	2.96 ^b	3.09ª
Lac 2	2.74	2.71	2.78
Lac 3	2.76	2.77	2.80

10

Week of lactation 3

40

62

ENERGY BALANCE

Week of Lactation 1

-60

Week of Lactation 2

	Low	Med	High
Lac 1	29.1 ^{ab}	26.0 ^b	31.7ª
Lac 2	46.6 ^b	47.4 ^b	55.1ª
Lac 3	42.7 ^b	44.2 ^{ab}	50.6ª

DAYS TO 1ST PROGESTERONE RISE

CALVING TO CONCEPTION

Treatment = NS Year x Treatment = NS

ATTRITION – WHOLE STUDY

	Low	Med	High
Started	72	72	71
Stealers	7	2	3
Start minus stealers	65	70	68
Cull or died	10	8	10
Reproductive failures			
Abortion	9	4	3
Not in calf	19	22	21
Culled after study	4	3	2
Would continue to 4 th lactation ¹	23 (35%)	33 (47%)	32 (47%)

¹Final percentages = [would continue] / [start minus stealers] *100

Embryo loss not included (some rebred): 8, 2, and 4 for low, medium and high, respectively.

EMBRYO LOSS

	Low	Med	High
Lactation 1	4	0	1
Lactation 2	0	0	3
Lactation 3	4	2	0
Total	8	2	4

Not included in attrition as cows were given the chance to continue the study following embryo loss

RPM and Fertility in Dairy Cows

Table 6. Overall effect of rumen-protected methionine (RPM) treatment on fertility responses and pregnancy loss in lactating dairy cows.

Item [% (n/total n)]	Treatment ¹				
	CON	RPM	P-value		
Multiparous					
P/AI at 28 days	67.1 (51/76)	66.7 (54/81)	0.48		
P/AI at 32 days	58.4 (45/77)	62.2 (51/82)	0.31		
P/AI at 47 days	55.8 (43/77)	61.7 (50/81)	0.23		
P/Al at 61 days	54.0 (41/76)	59.7 (46/77)	0.23		
Pregnancy loss					
28 and 61 days	19.6 (10/51)	6.1 (3/49)	0.03		
32 and 61 days	8.9 (4/45)	0.0 (0/46)	0.03		

RPM and Fertility in Dairy Cows

Table 7. Effect of rumen-protected methionine (RPM) feeding on ultrasonographic morphometry of amniotic vesicle and embryo on gestation Day 33.

		Amniotic Vesicle	Embryo			
Treatment ^{1,2} n	n Volume (mm³)	n	Crown-rump Length (mm)	Abdominal Diameter (mm)	Volume (mm³)	
Overall						
CON	63	542.6 ± 25.7	69	10.5 ± 0.2	5.5 ± 0.1	167.1 ± 6.0
RPM	80	594.9 ± 30.6	82	11.0 ± 0.2	5.8 ± 0.1	201.2 ± 10.6
P-value		0.27		0.08	0.04	0.01
Primiparous						
CON	30	617.1 ± 39.3	34	10.5 ± 0.2	5.6 ± 0.2	171.6 ± 7.6
RPM	36	596.0 ± 37.0	38	10.9 ± 0.2	5.7 ± 0.2	191.9 ± 14.3
P-value		0.67		0.21	0.61	0.38
Multiparous						
CON	33	479.4 ± 29.4	36	10.6 ± 0.2	5.3 ± 0.1	162.7 ± 9.2
RPM	44	593.9 ± 46.0	44	11.0 ± 0.2	5.9 ± 0.2	209.3 ±15.6
P-value		0.04		0.22	0.02	0.009

ATTRITION – WHOLE STUDY

ECONOMIC IMPACT

- Financial model of dairy enterprise to examine effect of varying dietary nitrogen
 - Variable inputs, fixed costs, output/revenue, gross and net margin
- Medium protein ration generates highest net margin
- Variable costs increase with both high and low protein diets
 - Feed costs highest in the HIGH group
 - Vet & med costs highest for LOW group
 - Replacement costs highest in the LOW group
 - Milk dumping highest for the LOW group

CONCLUSIONS – CEDAR TRIAL

- Lower protein diets more 'N efficient' but need to consider longer term effects at systems level
 - Economic and environmental implications
 - Similar degree of animal variation within treatments
 - Reasons for animal variation of considerable interest
 - No benefit of low protein diets for fertility
- Large variation in diet protein concentrations
 - Implications for precision feeding lower protein diets?
- For this study, the 16% crude protein diet was 'optimal' in many respects - this was by design
- Long-term negative effects of 'sub-optimal' protein supply evident (numerically) – survival reduced

SOME TAKE HOME MESSAGES Reading

- Economic and environmental pressure to reduce dietary protein inputs (especially imported feed proteins)
 - Less environmental impact
 - Risk of reduced milk yield
 - Risk of reduced survival for diets providing EAA below requirements
- Lower protein diets more 'N efficient' but need to consider longer term effects at systems level
- Precision feeding lower protein diets challenges of variations in feed composition – cows very resilient – long term average important
- The longer term effects of 'sub-optimal' metabolizable protein supply must be assessed relative to the benefits
 - Including effects during the rearing period often 'over' fed protein
 - Animal and system level
 - Economic and environmental impacts
 - Benefits vs risks and costs

