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Abstract 
This thesis has investigated the relationship between animal health and milk quality indicators 

and technical efficiency on Danish dairy farms to examine potential sources of inefficiency. To 

estimate the effects, translog input and output distance functions were estimated as stochastic 

frontier models, using panel data for full time dairy farms in Denmark from 2011 to 2015.  

On the 1 April 2015, the milk quota system within the European Union was abolished, which 

changed the market conditions for dairy producers substantially. Because of the regulation 

changes during the period covered in this thesis, the choice of orientation describing the 

production process became more important, and thus both an input and an output-oriented 

model were estimated and compared. We find that the Danish dairy farmers have been more 

input than output oriented during the period.   

As expected, we find that higher frequencies of mastitis and reproductive disorders have a small 

and negative impact on the technical efficiency of the farm, whereas other types of disorders 

are without significance. The results indicate that Danish dairy producers are aware of the 

importance of preventing and treating diseases. As anticipated, we find that a higher milk quality 

is associated with a higher level of technical efficiency. We also find that the type of breed and 

milking system are rather important factors in relation to productivity. The results of the model 

are used to evaluate the potential for Danish dairy producers to improve technical efficiency and 

productivity in the future, by discussing the economic gains and potential disadvantages of 

investing in new technology.  

Overall, full time dairy producers in Denmark are highly efficient and have increased their level 

of technical efficiency from 2011 to 2015, and thus drastic adjustments and improvements in 

relation to animal health and milk quality are not necessary. We argue that future improvements 

should be in relation to the technology used in production.  
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1. Introduction  

Farmers in Europe have operated in a dynamic environment for decades. The dynamic 

environment has occurred due to changes in demand for agricultural goods, overproduction, and 

new attitudes towards the agricultural sector. Adjustments and developments of the farm have 

been crucial to be able to survive as a competitive farmer.  

1.1 The Danish dairy sector  

The Danish dairy sector has developed throughout the last couple of decades despite the milk 

quota restrictions imposed by the European Union in 1984 (Landbrug og Fødevarer 2015). The 

Danish dairy farmers have experienced structural changes and made several investments, which 

has helped the sector to become one of the most efficient dairy sectors in the world. However, 

despite these improvements several dairy farmers are suffering economically and many have 

already gone out of business. Leaving the business could be either due to low efficiency or 

improper use of financial instruments. Common for all those who have left the business is that 

they failed in turning a profit. The farmers who are still at risk of shutting down are all subject to 

low equity or high debt (Pedersen et al. 2016).  

 

Another development in the sector has been that the number of dairy farms in Denmark has 

decreased from nearly 5,000 farms in 2008 to approximately 3,400 farms in 2015. During the 

same time the average number of dairy cows per farm increased, as can be seen from Figure 1.1. 

The total number of dairy cows has also decreased since 2008, because the farmers until the 1 

April 2015 were adjusting production according to the milk quota restrictions (Statistik 2015). 

While many farms have been closing, the remaining farms have gotten bigger. This suggests that 

the bigger farms are experiencing good results while the smaller farms cannot survive in the 

market (Pedersen et al. 2016).  
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Figure 1.1: The development in the farm size and the number of farms 

 
Note: *The figure contains all dairy cow farms in Denmark including part time and hobby farms. 

Source: (Statistik 2016d) and own calculations. 

 

However, despite this development, the milk production in Denmark has not decreased, as can be 

seen from Figure 1.2. The amount of organic milk produced has been stable at around 480 

million kg a year from 2008 to 2015, while the amount of conventional milk produced has 

increased from less than 5,000 million kg per year to more than 5,200 million kg per year.  
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Figure 1.2: The development in the milk production 

 
Source: (Statistik 2016a).  

 

Even though there has been an increase in the amount of milk produced from 2008 and on, there 

has at the same time been a reduction in the number of dairy cows, which means that the yield 

per cow has increased. The farmers have managed to optimize their production, without 

increasing the number of dairy cows on the farm (Statistik 2016b). 

 

In the years leading up to the removal of the milk quotas, the dairy producers have produced 

more milk than the previous years while there has been a decrease in the demand of dairy 

products from China. The increase in supply and decrease in demand has caused the price on 

milk to decrease, as can be seen from Figure 1.3 (Statistik 2016b; Vidø et al. 2016). This 

development was expected, because the incentives to limit the milk production were removed 

when the milk quotas were revoked on the 1 April 2015. This market change is one of the 

reasons why so many Danish dairy farmers have not been able to stay in production (Berthou 

2016).    
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Figure 1.3: The development in the price on milk 

 
Note: * Energy corrected milk (ECM) 

Source: (Statistik 2016e).  

1.2 Efficiency analysis 

If a farmer knows how every part of his production works, he can more easily adjust to market 

changes, and hence always be efficient. For many years, the Danish dairy sector has overall 

performed poorly since not all farmers have managed to cover their total costs. However, despite 

the unstable market conditions some Danish dairy farmers have succeeded in generating a profit 

and therefore been successful through a period longer than just one season (Andersen et al. 

2014).  

 

The literature concerning agricultural production has used efficiency analysis extensively. It is 

based on production theory, which studies the transformation of inputs into outputs. The method 

bundles partial productivities into aggregate performance measures. Thereby it compares the 

current performance level of a farm with the potential optimal performance level by determining 

a production frontier. The production frontier represents the best practice transformation of 

inputs into outputs. Farms that are placed below the frontier are not technically efficient, but 

have the possibility to change their input-output transformation and move closer to the frontier 

(van der Voort et al. 2014). It is possible to distinguish between producing the maximal feasible 

amount of outputs with a given amount of inputs (output-oriented technical efficiency) and 

producing with the minimal amount of input to obtain a given amount of output (input-oriented 
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technical efficiency). In the case of an output oriented dairy farm, technical efficiency measures 

the ability to produce the maximum level of milk from the given set of input factors, whereas the 

input oriented dairy farmer will reduce inputs while maintaining the same level of milk output.  

A technical efficiency score is calculated for each individual farm by measuring the distance 

between the farms’ production level and the best practice frontier (van der Voort et al. 2014).  

1.3 Problem identification  

The best third of all dairy farmers in Denmark has proven that it is possible to do well even 

during downturns in the market (SEGES P/S 2016). There are several ways in which the 

successful farmers manage to maintain economically good results during the different changes in 

the market. The success is dependent on an efficient production, where output is maximized or 

input is minimized (Andersen et al. 2014). The analysis by Pedersen et al. (2016) shows that the 

best dairy farmers, both conventional and organic, manage to keep total cost at around 80 per 

cent of the gross output whereas for the less successful ones the cost make up between 95-98 per 

cent of the gross output. The dairy farmers operate in a market close to perfect competition, and 

thus keeping cost at a minimum is crucial in order to survive.  

 

From Figure 1.4 it is clear that there is a substantial difference in the results obtained by the best 

and the worst farmers in the sector. For all the years, except the year 2009, the average result for 

the best quartile with at least 100 dairy cows has been close to at least 1 million DKK for both 

the conventional and organic farmers. From 2009 to 2014 the best quartile experienced a positive 

development in the results. In 2015 both the conventional and organic farmers in the best quartile 

once again experienced a drop in the result alongside the conventional farmers in the worst 

quartile. Since 2009 the organic dairy farmers in the worst quartile have experienced a positive 

development. Overall the worst quartile has experienced negative results from 2008 to 2015.  
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Figure 1.4: The development and the differences in the results among dairy 
farmers for the best and worst quartile 

 
Note: *The results are the average for those farms with 100 -199 dairy cows and those with more than 200. 

Source: (Statistik 2016e) and own calculations.

 

The literature has focused mostly on why these differences occur in relation to equity and 
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a minimum, as in Andersen et al. (2014), Kaiser et al. (2011), and Pedersen et al. (2016). In these 

reports, it is clearly shown that the best performing farms are in position of a manager who is 

aware of how resources can be allocated in an optimal way. However, these reports have focused 

mainly on the effects of capital and labour inputs on the farm results, but have left out the aspect 

of animal health and milk quality indicators, which could also help explain some of the 

differences in the results obtained among the dairy farmers in Denmark.  

 

The milk quality is important, since it affects the price a farmer can receive for the milk. The 

milk quality is measured using different milk quality indicators and depending on the levels of 

these, the size of the supplement is determined. These supplements are of great importance to the 

industry and even though the Danish dairy producers have shown great improvements in relation 

to lowering the cell count, the Danish dairy farmers are still missing out on hundreds of millions 
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for the economic performance of a farm, since organic farms have much higher input costs 

especially when it comes to feed (Andersen et al. 2016).  

1.4 Research questions 

The objective of this study is to analyse if there are any significant effects of the milk quality 

indicators and certain animal health indicators on technical efficiency among Danish dairy 

producers. By using an input and an output distance stochastic frontier approach it will be 

examined how both the milk quality and animal health indicators affect the technical efficiency 

of a farm. Further it will look at how these factors are related to technical efficiency along with 

other production characteristics such as the choice of breed and milking system. 

 

The following research questions will be addressed:  

 

1. Can the milk quality and level of animal health explain the differences in technical 

efficiency, which exist among Danish dairy producers?   

2. To what extent can the production characteristics, such as the type of milking system and 

breed, describe the level of productivity obtained on the Danish dairy farms?  

3. How can the specialised milk producers in Denmark improve technical efficiency in the 

future? 

1.5 Scope and delimitation  

The thesis aims to answer the research questions by analysing accounting data and cattle related 

data on full time specialised dairy farms in Denmark in the years 2011 to 2015. The dataset 

received from SEGES contained merged data from Økonomidatabasen (the accounting database) 

and Kvægdatabasen (the cattle database), sorted to enclose only farms with dairy production. A 

fulltime specialized dairy farm is in this thesis defined as one requiring at least 1665 norm hours 

on the farm per year, having two thirds or more of the gross margin stemming from dairy 

production, and having at least 49 cows in the herd. The final dataset is not considered to be 

representative of the whole sector, as the data was not collected using conditions of proper 

random sampling. Although the dataset is not representative, for the year 2015 it contains 1505 

fulltime specialised dairy farms out of the total of 3,400 dairy farms in Denmark, corresponding 

to 44 percent.  
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The thesis will use panel data from two databases at SEGES and use econometric methods to 

analyse if and how much influence milk quality indicators and animal health indicators along 

with certain production characteristics have on the technical efficiency of the farm.  

The study is limited to analysing primarily the effects of milk quality and health indicators and 

will not look in to the financial aspects of being a farmer such as the importance of investments, 

equity, profitability, and solvency. Farm level prices were not observed, and hence national level 

price indices were used to account for price changes in the analysed period, thereby assuming 

that all farmers have faced the same input and output prices.    

1.6 Methodology 

This thesis will use an econometric model that is based on economic theory of production 

economics. The model will be applied to a merged dataset of accounting and cattle data from the 

Danish Agricultural sector. All data manipulations and estimations will be conducted within the 

statistical software environment “RStudio”. Basic statistics is presented through tables and 

graphs created in Excel.  

1.7 Reader’s Guide 

The thesis is organized as follows: Chapter 1, 2 and 3 provide background knowledge of the 

Danish dairy sector and previous literature concerning the thesis objective. Chapter 4 and 5 

introduce the theory and method to be used. Chapter 6 describes the datasets and decisions 

concerning the model. Chapter 7 presents the estimation procedure, while Chapter 8 presents the 

obtained results. Chapter 9 provides a discussion of the outcome of the investigation, whereas 

Chapter 10 concludes and Chapter 11 discusses possibilities for further investigations. In Chapter 

12 all references are listed and Chapter 13 includes the appendices with extra tables, figures, and 

the data script.   
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2. Literature review 

Extensive research has been made to investigate impacts on technical efficiency on farms. Often 

the social aspects such as the treatment of animals, has been left out in these analysis (Barnes et 

al. 2011). Only few studies are using real-world farm data. However, research focusing on 

animal welfare does exist and it often concentrates on animal welfare measures, using animal 

disease occurrences as measures (Lawson, Agger, et al. 2004; Barnes et al. 2011; Lawson, 

Bruun, et al. 2004). Often studies assessing the impact of production diseases on the economic 

performance have focused on evaluating the difference in milk output among diseased and non-

diseased cows, the effect on reproductive performance or the effect of the treatment of the 

diseases (Lawson, Agger, et al. 2004).  Animal welfare and health indicators are closely related, 

which is why we refer to literature regarding both aspects. However, it is important to emphasize 

that the expressions cannot be used interchangeably, since differences between the two terms 

exist.  

 

The most commonly used methods in the literature regarding animal welfare and economic 

performance are the Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) 

approaches. The DEA is a non-parametric approach, and therefore not as restrictive as the SFA. 

The DEA approach is more flexible because it does not require a functional form. Using the 

DEA, any possible noise is suppressed and any variation in the data is considered to be due to 

inefficiency. SFA is a parametric approach, and unlike the DEA, there should be made 

assumptions about the structure of the production possibility set and the data generation process. 

Even though the SFA requires a functional form, like a production function, which needs to fulfil 

certain restrictions, it allows us to assume that the deviations from the frontier can reflect 

inefficiencies and noise in the data (Bogetoft & Otto 2011). 

 

Because diseases can affect both the quantity and the quality of the milk output and therefore 

also the economic performance of the farm, it can be argued that it is relevant to explain 

variations in management styles in relation to preventing and handling diseases. By looking at 

the whole farm, the farmer’s management abilities can be measured, by evaluating the level of 

technical efficiency (Lawson, Agger, et al. 2004).  

 

This thesis will use the stochastic distance function approach to investigate changes in the 

Danish milk producers’ technical efficiency. This is a well-established method, which has been 
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widely used to examine agricultural productivity. The stochastic frontier approach was presented 

by Meeusen & van Den Broeck (1977) and Aigner et al. (1977) independently, and distance 

functions were presented by Shephard (1970). The advantages from using the distance functions 

instead of a production function will be elaborated later.  

 

Following these publications, many authors have used the approach to examine agricultural 

efficiency. An example of this is Newman & Matthews (2007), who used a stochastic output 

distance function to estimate the productivity growth of Irish agriculture for four farming 

systems. They find that variable costs and milk output have the largest elasticities for specialised 

milk producers. Brümmer et al. (2002) also used a stochastic output distance function to measure 

the productivity growth among German, Dutch, and Polish European dairy farms from 1991-

1994, and find that efficiency has increased over the years, which is mainly due to technological 

improvements. They end up concluding that the results obtained can be used for further 

improvements in the dairy sector, since they have presented in more detail which areas of dairy 

production that can be adjusted.  

Sipiläinen (2007) uses the distance function approach to estimate both an input and an output 

distance function for unbalanced panel data on Finnish farms specialising in milk production. 

The analysis finds that the orientation of the model is sensitive to explaining technical efficiency 

in relation to the size of the farm. Sipiläinen (2007) mainly focuses on the input distance 

function, given that Finland, by joining the European Union, had to adjust production according 

to the milk quota restriction. The results obtained show that there is a large elasticity of scale 

suggesting that Finnish farms can increase inefficiency by operating at a larger scale. Common 

for the studies is that the monotonicity assumption is violated for a small fraction of the 

elasticities, but it is fulfilled at the sample mean, and thus the estimated models hold.   

 

Lawson, Bruun, et al. (2004) study the relationship between milk production efficiency and the 

incidence of reproductive disorders using a stochastic frontier production function approach to 

see whether the farmers reporting a higher number of incidences are less efficient. By using the 

stochastic frontier approach, they include the traditional behavioural assumption of farmers 

wanting to produce the maximal output from the available inputs. The results show that 

reproductive diseases do not have a negative effect on efficiency on Danish dairy farms. They 

argue that it is because managers compensate for the disorders by using early enrolment and 

replacement of cows (Lawson, Bruun, et al. 2004). Lawson, Agger, et al. (2004) investigate 

whether farms reporting more incidents of lameness and metabolic disorders are less technically 
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efficient. Again, the stochastic frontier approach is used and it is found that milk producers 

reporting more treatments of the investigated diseases are the most efficient dairy farmers. It is 

found that the expected negative association between technical efficiency and the diseases is 

overshadowed by the productivity of some of the input variables.  

 

Barnes et al. (2011) apply animal welfare as a discriminating technology within a technical 

efficiency framework. They investigate how lameness can be prevented by good management 

strategies by looking at 80 dairy farms across Great Britain, using observed data on inputs and 

outputs and collected lameness scores. Using the data envelopment analysis (DEA) approach they 

find that farms with low rates of lameness tend to have higher technical efficiencies than the farms 

with high rates of lameness. Furthermore, the study shows that low lameness rates are inefficient in 

terms of labour and stocking density but this factor is compensated by the higher milk yield 

obtained by these farms. Looking at the whole farm economy the results suggest giving more 

attention to the management of lameness, to increase the technical efficiency on the farm.  

A theoretical framework for explaining the relationship between animal welfare and economic 

performance of livestock farms is proposed by Henningsen et al. (2016). They illustrate how 

each component in the production process is connected, and include animal welfare as being 

directly dependent on the production process. By incorporating animal welfare in the production 

process, they illustrate that animal welfare should not be ignored when optimizing. This 

theoretical framework will be discussed in the theory part of this thesis.  

 

Overall it is clear that the well-being of the animals used in production affects the efficiency of 

the farm. Lawson, Agger, et al. (2004) find that the more efficient farms are those with the 

highest reporting of treatment. Barnes et al. (2011) also find that low rates of lameness are 

associated with greater efficiency. Common to all the studies is that they find that animal welfare 

and health is related to efficiency and hence the economic performance of the farm (Barnes et al. 

2011). Further the studies conclude that management is very important to ensure a good 

economic result. The studies, do not discuss the implications of violating monotonicity, but are 

aware of the importance of fulfilling it at the mean. However, Henningsen & Henning (2009), 

who have invented a rather simple procedure to impose monotonicity, criticise authors for not 

imposing it, given the complications these violations might lead to . 
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The literature regarding animal welfare and health has not analysed the impact of various 

diseases and milk quality on efficiency over time, which justifies an attempt to estimate a model 

including these factors. Furthermore, according to our knowledge, there are no studies, which 

focus at the relationship between the milk quality and the technical efficiency of the farm. Thus, 

this thesis contributes to the literature by analysing the effects of milk quality on dairy farm 

efficiency.  
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3. Danish Dairy Production 

3.1 Cow biology and production limitations  

Milk production requires a lot of planning and cannot be adjusted from one day to the next. 

Before a heifer can start producing milk it must have its first calf. A calf is not ready for 

insemination before it is at least one year old. A gestation period lasts for about nine months and 

hence the heifer is approximately two years old, when it calves for the first time. Three months 

after the cow has calved it is ready for insemination again. In order to secure a good milk 

production after the cow has given birth again, the farmer stops milking the cow about two 

months before its due date. Shortly after the cow has given birth again, the milking is resumed. A 

typical Danish dairy cow only lives three to four years because its milk production is decreasing 

with age and hence it is more profitable to slaughter it at an early age and replace it with a 

younger cow (Landbrug og Fødevarer 2013).  

 

Typically a cow is milked two or three times a day, depending on the feed and race. However, 

milking a cow three times a day requires more feed and labour input, and hence might not be 

optimal for all dairy farmers if the marginal costs associated with an increased production exceed 

the extra earnings (Martinussen & Sørensen 2015). In the short run certain production factors, 

such as the amount of land or the number of cows, are fixed for a dairy farmer. However, several 

factors related to the health of the animals can be adjusted in the short run. This includes milking 

routines and hygiene levels, which are dependent on the daily management. This thesis will 

investigate if those factors which can be quickly adjusted influence efficiency.  

 

From this short overview it is clear that working with cattle is challenging. The production of 

milk has to be planned years in advance and cannot for the most part just be corrected on a daily 

basis. Working with live animals, the long run planning of production is even more difficult, 

because there can be more unforeseen challenges than with machines.  

3.2 Health Indicators 

The most common diseases in a herd are mastitis, hoof and limb disorders, and reproductive 

disorders. It is therefore these disorders that will be given focus in this thesis. The disorders will 

be used in general terms, as we do not have data concerning the different specifications of the 
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diseases. The following knowledge of diseases and milk quality indicators was obtained during 

an interview with Veterinarian Peter Raundal from SEGES (Raundal 2016).  

 

Mastitis occurs due to bacterial infections from environmental bacteria or cows being carrier of 

the bacteria. The clinical case lasts for 2-5 days and some end up being chronic, whereas others 

cause elevated cell count levels for a few weeks. If the occurrence is early in the lactation period, 

the cell counts can adjust to their normal stage rather fast, while it can take 2-3 weeks before the 

numbers are back to normal in other cases. Farms with larger herds often have lower treatment 

costs per cow, as they often have the knowledge to treat the animals, and therefore do not have 

the costs of a veterinarian. If the cow is given medication it is in detention for 8-10 days before 

the milk is acceptable to use again. The medication costs are around 150-250 DKK per cow for 

one treatment. While the cow is infected, it produces around 5-8 kg milk less a day.  

 

Hoof and limb disorders are divided into skin related and horn related disorders, where the horn 

related can be more prolonged. It is very individual for the cow whether it ever gets a hoof 

disorder or if it has problems with it more often. The disorders can last for different periods of 

time depending on the individual cow and disease. The disease can last between 2 weeks and 7 

months depending on when and how it is treated. The treatment takes approximately 2 weeks. 

Only a few are treated with antibiotics; it is only used related to infections and therefore the cow 

does not get any detention. Often the treatment is done with remedies as bandages, trimming of 

hoofs, and hoof shoes and therefore treatment costs vary, but the average cost per treatment is 

100 DKK. Some farmers might choose to treat the animals themselves while others prefer 

assistance from a veterinarian. When a cow has a hoof disorder the milk yield is reduced by 300-

800 kg milk for the whole lactation period.  

 

Reproductive disorders are also very different from each other and include things as metritis, 

problems with the birth routes at calving, and lacking heat. Again, reproductive disorders 

demand very different treatments depending on the relevant case. As an example, does metritis 

create a loss of 2-3kg milk a day and it takes about a week for the treatment to work. If treated 

by a veterinarian the farmer has the cost of the vet visit, where the costs can vary, and the 

medication, which is around 150 DKK. If the cow has problems with lack of heat, it does not 

give direct production loss, but it is a management decision how many chances the cow is given.  
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3.3 Milk Quality Indicators  

Cell counts, viable counts, and spores are all factors, which are important for the settlement of 

the milk prices given by the dairies. The cell count expresses the number of somatic cells in the 

milk, which is an expression of the health of the udder. Thus, high cell counts indicate that the 

cow is infected. The viable count is an expression of the number of bacteria in the milk, which is 

also related to the udder health and can help determine the level of hygiene at the farm. The third 

milk quality indicator, the spore count, is an indicator of the number of bacterial spores and is 

preferred to be low since a high spore count causes the milk to ferment (SEGES P/S n.d.). 

Hence, all three parameters express the level of bacteria in the milk and thus the quality.  

 

In Denmark, the price, the farmer receives for his milk, depends on the average level of cells, 

viable counts, and spores in the milk he delivers. Since Arla is by far the biggest dairy in 

Denmark, receiving 90 percent of the milk produced in Denmark, the milk quality levels 

providing a supplement are assumed to be representative for the industry (Vidø et al. 2016). 

Generally, the farmers want to keep the numbers down to avoid the deductions described in 

column 5 of Table 3.1, which indicates that low milk quality indicators provide the best milk 

quality. 

 

Table 3.1: Overview of Analysis, Limitations and Allowance & Deductions 

Source: (Arla Foods amba 2016) 

 

Analysis 
Analysis 

Frequency Categories Limitations 
Allowance & Deductions, % 

of raw material value 

Cell Counts, 
1000 cells/ml 

1 per 
delivery 

1S 0-200 + 2 % 
1E 201-300 + 1 % 
1B 301-400 0 % 
2 401-500 - 4 % 
3 501- - 10 % 

Viable 
Counts, 1000 

viable/ml 

4-5 per 
month 

1E 0-30 + 1 % 
1B 31-50 0 % 
2 51-100 - 4 % 
3 101- - 10 % 

Spores, 
Spores/litre 2 per month 

1E 0-400 + 1 % 
1B 401-4000 0 % 
2 4001-  - 4 % 
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Mastitis can, as mentioned, affect the cell count. In the case of mastitis, the cell count can 

increase to one million for one cow and it takes 4-5 weeks on average for the numbers to get 

back to normal. For some animals, the process is fast and for some it takes much longer. Some 

sorts of mastitis can also affect and increase the viable count.  

 

The farmer can take certain precautions to ensure low and steady levels of cell counts, viable 

counts, and spores. Clean stables and clean animals can help prevent the spreading of bacteria, 

but most important is the handling of the animals during milking. The use of gloves is essential 

and thorough cleaning of the milking system is necessary to prevent bacteria from spreading. 

 

If using a traditional milking system, there can be a risk with the large amount of handling of the 

animals. If one place is infected it can spread easily if the farm lacks high levels of cleaning. To 

minimize the risk of diseases spreading from one animal to the others, one should use milking 

gloves and make sure that there is a thorough cleaning of the teats.  

With a robot milking system, the risks are different as there is less handling of animals, but 

instead bacteria can easily spread if the robot system is not maintained properly and cleaned 

daily. The farmer can through his daily management and technical decisions affect the cell count, 

the viable count, and the spore count by working with his milking procedures and hygiene.  

 

On average the Danish milk producers had cell count values below 200,000 in 2015, which 

makes 2015 the best year for cell count numbers in history. Though there has been a tendency 

for the farmers to improve the cell count levels, there is still unused potential in this area, as the 

numbers varies between the farms, which indicates that some farms still have possibilities to 

improve the cell counts to obtain a higher supplement (Andersen et al. 2016). 

 

Obtaining low milk quality indicators require attention to the hygiene in the stables, the milking 

routines, and the general health of the animals, which are all things that can increase the input 

use. Andersen et al. (2016) argue that attention should be made to lowering the cell counts, 

because the dairy sector was missing out on more than a 100 million DKK in supplements in 

2015. They do not seem to reflect on the potential extra costs, which an improvement of the milk 

quality could require. If the extra costs of improving the hygiene in the stables or securing better 

milking routines exceed the gains of receiving a price supplement, then the farmer should refrain 

from doing it. The optimal level of the milk quality indicators can differ among the dairy 

producers.  
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It has been explained how dairy farming needs long term planning and that only some factors 

can be altered in the short run by the farmer. One area, in which the farmer can have an influence 

in the short run, is on how he manages diseases and thereby the health indicators of the herd. The 

most common diseases are mastitis, hoof and limb disorders and reproductive disorders and they 

can all be managed differently depending on how many resources the farmer spends on them. 

Some farmers choose to have the expenses of a veterinarian, while others foremost treat the 

animals themselves. Daily management can therefore also impact the levels of cell counts, viable 

counts, and the spore count. In his daily work the farmer is responsible of considering how many 

resources to be spend on managing health, for the farm to be as efficient as possible.  
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4. Theoretical Framework  

This part of the study provides the theoretical and conceptual basis for the analysis. The section 

covers more general theory regarding production theory and the production function. We will 

also illustrate the role of management and the effect of animal health on the farmer’s profit.  

4.1 The Production Function  

The production function is defined as the maximum amount of output which can be produced, 

given a certain technology with a certain amount of input (Rasmussen 2011).  

One very basic assumption across all fields of economics is that there is a relationship between 

input and output in production. The basic production function is expressed as  

𝑌 𝑦, 𝑥 = 0 

Here 𝑥 represents a vector of non-negative inputs and 𝑦 a vector of non-negative outputs, 

assuming the fact that production cannot take place without inputs and that output cannot be 

negative. Further restrictions are also imposed in the theory described by Chambers (1994). It is 

assumed that the function fulfils certain conditions, for instance: monotonicity, concavity, and 

essentiality.  

 

The assumption of monotonicity in the production function is implemented because a rational 

decision maker would never increase the amount of input, if it would not lead to an increase in 

the output produced. This would only increase costs and hence not be optimal (Chambers 1994). 

If monotonicity is violated efficiency estimations become non-interpretable (Henningsen & 

Henning 2009). 

 

Concavity is assumed because it ensures that the assumption of diminishing marginal returns is 

included (Chambers 1994). This condition states that when increasing the amount of input into a 

production, holding other inputs fixed, the additional returns generated will gradually diminish 

until they become negative. The marginal return expresses the extra output generated per input 

when the amount of input increases. If quasi-concavity is violated, the marginal rates of technical 

substitution are not decreasing and profit-maximizing behaviour is not reflected under 

microeconomic assumptions. However, multiple reasons exist why functions are not quasi-

concave. It could be that inputs are not perfectly divisible, production activities are not almost 

independently applied, prices could be endogenous, and regulatory restrictions on inputs could 

exist (Henningsen & Henning 2009). Quasi-concavity requires the Hessian matrix of the second-
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order derivatives of output, with respect to the inputs, to be negative semi-definite. Henningsen 

& Henning (2009) suggest that one checks for quasi-concavity once the model is estimated; 

however, imposing it is not necessary.  

Essentiality is the need for inputs to produce a product. Chambers (1994) looks at both weak 

essentiality and strict essentiality. Weak essentiality is when production of a positive output is 

impossible without at least one input, which is rather intuitive. Strict essentiality is when the 

production of a good cannot take place without a positive amount of a specific input. The input is 

then strictly essential to the production.  

The Cobb-Douglas Production Function  

There are several different production functions; however the Cobb-Douglas production function 

fulfils the restrictions that have been listed in the previous section, which is why we will explain 

the Cobb-Douglas production here (Chambers 1994). The choice of the functional form of the 

Cobb-Douglas production function can be discussed, but here the most general form of the 

function is presented:  

𝑓 𝑥 = 𝐴 𝑥!
!!

!

!!!

 

Where 𝛼! > 0 and 𝑖 = 1,2,… ,𝑛 

 

The production function can be linearized using the natural logarithm:  

ln 𝑦 = 𝛼! + 𝛼!ln  (𝑥!)
!

!!!

 

Where 𝛼! = ln  (𝐴) (Henningsen 2014). 

The Translog Production Function 

A more flexible version of the Cobb-Douglas function is the translog production function. It was 

introduced by Berndt & Christensen (1973). It is a quadratic function and therefore an extension 

of the linear function. The translog function can thus be viewed as a combination of the Cobb-

Douglas function and the quadratic function. The translog production function has the following 

specification: 

ln𝑦 = 𝛼! + 𝛼! ln 𝑥! +
1
2 𝛼!" ln 𝑥! ln 𝑥!

!!!

 

Where 𝛼!" = 𝛼!" (Henningsen 2014).  
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The translog function does not always fulfil the monotonicity assumption due to its quadratic 

nature. There will be a set of input quantities that provide a negative marginal product, but there 

are areas in the input space where all the conditions are satisfied. These areas might be large 

enough so that it is possible for the translog function to provide a relevant representation of the 

production possibilities (Berndt & Christensen 1973).  

 

When deciding on which production function to use in the final estimation, a likelihood ratio test 

can be applied to compare the results obtained from the two production functions. This is 

possible because the Cobb-Douglas production function is “nested” in the translog production 

function (Henningsen 2014).  

4.2 Input and Output Distance Functions 

Distance functions allow us to describe a multi-input or multi-output production technology, 

without having to specify a behavioural objective such as cost minimisation or profit-

maximisation, however specifying both may be an advantage (Coelli et al. 2005; Shephard 

1970). Distance functions can be used to describe technology, by making it possible to measure 

efficiency and productivity, while accounting for multiple inputs and outputs without much 

aggregation. The concept of distance functions is closely related to production frontiers, as 

distance functions emphasize that the function is not only numbers. Procedures also map 

technologies and observations into real numbers (Bogetoft & Otto 2011). An input oriented 

distance function describes a production technology by looking at a minimal proportional 

contraction of the input vector, given an output vector. Contrary to this, an output distance 

function considers a maximal proportional expansion of the output vector, given an input vector 

(Coelli et al. 2005).  

 

As we will account for more than one output in our model, we will use the multi-output 

generalization of a frontier production function: the Shepard distance function (Shephard 1970). 

In this thesis both the input and output distance approach will be estimated as the data set covers 

the period from 2011 to 2015, where a milk quota regulation until the 1 April 2015 restricted the 

farmers’ output. We therefore assume that the milk quota restrictions called for an input oriented 

production in the period in the dataset from 2011 to 2014, while the cessation of the quota in 

2015 would change the farmers’ incentive towards an output oriented production. However, 

given that the farmers were well aware of the cessation of the quota years in advance, they might 
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have planned to increase production. The Danish milk producers have to some extent exceeded 

their quotas, which could indicate that even with the quotas, the farmers have not kept output 

fixed every year (Wiese 2015).  

The Input Distance Function 

We start by considering the Shepard input distance function, where the output set, 𝑦, can be 

produced using the input vector, 𝑥. The input distance function includes, different from the 

output distance function, a scaling of the input vector. The Shephard input distance function is 

defined as (Bogetoft & Otto 2011): 

 

𝐷! 𝑥,𝑦 = 𝑚𝑎𝑥 𝐷 > 0  |
𝑥
𝐷 ,𝑦 ∈ 𝑇 =

1
𝐸 𝑥,𝑦  

 

Where 𝑥 is a vector of input quantities and 𝑦 is a vector of output quantities, 𝑇 is the technology 

set and 𝐸 𝑥,𝑦  is the Farrell input efficiency (Bogetoft & Otto 2011).  

 

The Farrell efficiency depends on the starting point 𝑥,𝑦  and the technology set 𝑇. The Shepard 

distance function is the inverse of the Farrell efficiency function (Bogetoft & Otto 2011).  

In Coelli et al. (2005) it is stated that from the axioms on the technology set a few properties of 

𝐷! 𝑥,𝑦  follow: 

 

1. The input distance function is non-decreasing in 𝑥 and non-increasing in 𝑦. This implies the 

assumption of monotonicity and therefore indicates that additional units of inputs can never 

decrease the level of output.  

2. 𝐷! 𝑥,𝑦  is linearly homogeneous in 𝑥. The technology set is subject to constant returns to 

scale. 

3. 𝐷! 𝑥,𝑦  is concave in 𝑥 and quasi-concave in 𝑦.  

4. If 𝑥 belongs to the input set of 𝑦, then 𝐷! 𝑥,𝑦 ≥ 1.  

5. The distance is equal to unity (i.e. 𝐷! 𝑥,𝑦 = 1) if 𝑥 belongs to the frontier of the input set 

(the isoquant of 𝑦). It follows from properties 4 and 5 that there is a potential radial 

expansion of the production up to the frontier of the production possibility set.  

 

The input distance function can be illustrated using an example where two inputs, 𝑥! and 𝑥!, are 

used to produce an output vector 𝑦. For a given output vector the production technology set is 
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represented in Figure 4.1. The input set is the area bounded below the isoquant. For the point A, 

which defines the production point where firm A uses 𝑥!! of input 1 and 𝑥!! of input 2 to 

produce the output vector 𝑦, the value of the distance function is equal to the ratio 𝐷! = 0𝐴/0𝐵.  

 

Figure 4.1: Input distance function and input requirement set 

 
Source: own drawings based on (Coelli et al. 2005) 

The Output Distance Function 

The Shepard output distance function can be defined as: 

 

𝐷! 𝑥,𝑦 = 𝑚𝑖𝑛 𝐷 > 0  | 𝑥,
𝑦
𝐷 ∈ 𝑇 =

1
𝐹 𝑥,𝑦  

 

Where 𝑥 is a vector of input quantities and 𝑦 is a vector of output quantities. 𝑇 is the technology 

set and 𝐹 𝑥,𝑦  is the Farrell output efficiency (Bogetoft & Otto 2011).  

 

Much like the properties for the input distance function, the properties for the output distance 

function can be listed (Coelli et al. 2005): 
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1. 𝐷! 𝑥, 0 = 0 for all non-negative 𝑥. This indicates that 𝑥 cannot be non-negative for the 

technical efficiency to be different from zero.  

2. 𝐷! 𝑥,𝑦  is non-decreasing in 𝑦 and non-increasing in 𝑥. This implies the assumption of 

monotonicity and therefore indicates that additional units of inputs can never decrease the 

level of output.  

3. 𝐷! 𝑥,𝑦  is linearly homogeneous in 𝑦, which follows from the distance function definition. 

The technology set is therefore subject to constant returns to scale.  

4. 𝐷! 𝑥,𝑦  is quasi-convex in 𝑥 and convex in 𝑦.  

5. if 𝑦 belongs to the production possibility set of 𝑥, then 𝐷! 𝑥,𝑦 ≤ 1 

6. and distance is equal to unity (i.e. 𝐷! 𝑥,𝑦 = 1) if 𝑦 belongs to the frontier of the 

production possibility set. It then follows that properties 5 and 6 indicate the potential radial 

expansion of the production up to the frontier of the production possibility set.  
 

The concept of an output distance function can be illustrated using an example where the outputs 

𝑦! and 𝑦! are produced using the input vector 𝑥. In Figure 4.2 below, the production technology 

for a given input, 𝑥, is represented in a two-dimensional diagram. The technology possibility set, 

𝑇, is the area bounded by the transformation frontier and the 𝑦! and 𝑦! axes. For the firm using 

input level 𝑥 to produce the outputs defined by the point A, the value of the distance function is 

equal to the ratio 𝐷! = 0𝐴/0𝐵. This distance measure is the reciprocal factor by which the 

production of all output quantities could be increased while remaining within the technical 

possibility set for the given input level. As the points B and C are on the production possibility 

surface they will have distance function values equal to one. 
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Figure 4.2: Output distance function and production possibility set 

 
Source: own drawings based on (Coelli et al. 2005) 

 

A few results can be stated for the connection of the input and output distance functions.  

If 𝑦 belongs to the production possibility set associated with input vector 𝑥, then 𝑥 will belong to 

the input set associated with the output vector 𝑦. 

 

If it is assumed that both inputs and outputs are weakly disposable it can be stated that:  

 

𝐷! 𝑥,𝑦 ≥ 1 if and only if 𝐷! 𝑥,𝑦 ≤ 1 

 

If the technology displays global constant returns to scale, it can be stated that:  

 

𝐷! 𝑥,𝑦 = !
!! !,!

, for all 𝑥 and 𝑦 

 

Which indicates that, under constant returns to scale, the input distance function will be the 

reciprocal of the output distance function for any 𝑥,𝑦  (Coelli et al. 2005). 
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4.3 The influence of management on economic performance 

In economic theory it is assumed that an individual always seeks to maximize profit. This means 

that the owner of a firm seeks to maximize output and minimize input while buying at a low cost 

and selling at a high price. Like any other theory there are exemptions. According to Varian 

(2010), business owners can have other objectives than to maximize profit. Typically, these 

owners will participate in the day-to-day operations to carry out their objectives for the firm. In 

agricultural firms it is common that there can be other objectives than just profit maximization 

due to the nature of the job. A farmer lives on his farm and hence his business is also his home. 

This means that he is more likely to have other motives for his business (Christensen et al. 1990). 

Another motive apart from profit maximization could be to have a healthy livestock, which 

means that the welfare of the animals on the farm might be more important than the costs of 

treating them.  

 

There have already been conducted studies, which show the importance of coping with diseases 

and the general health of livestock to increase efficiency and the economic performance of a 

farm. Diseases can affect milk output in a number of ways, and it is therefore relevant to analyse 

how the farmers manage diseases (Lawson, Agger, et al. 2004). Mastitis, hoof problems, and the 

like are all management dependent, because the manager can prevent and treat such diseases by 

allocating resources and changing production inputs. When these disorders are present, it is a 

reflection of the farmer’s prioritization of inputs and managerial abilities to choose the actions 

which can increase the health of the animals and thereby also their performance (Lawson, Agger, 

et al. 2004). 

 

Henningsen et al. (2016) propose a theoretical framework, which can explain the relationship 

between animal welfare and the economic performance of livestock farms. Animal welfare is 

closely related to animal health, since the health of the animals contributes to their welfare. 

Further the milk quality is also affected by the health of the animals and welfare conditions, such 

as the cleanliness of stables. The levels of the milk quality indicators are sensitive to most 

diseases, and thus a high number of diseases will increase the cell counts, thereby lowering the 

milk quality. Management covers the managerial decisions such as the choice and quantity of 

input factors like the type of feed, veterinary products, work hours, and equipment.  

 

Henningsen et al. (2016) consider how much a manager should invest in improving the welfare 

of his livestock. Increasing the welfare of his animals can result in better performing animals. 



34 

However, the relationship between economic performance and welfare is not linear and hence 

the welfare of the herd has a positive effect on economic performance until a point, where the 

resources spent on animal welfare is maximised. Beyond this point the extra resources spend on 

animal welfare do not generate more output, and hence would violate the assumption of 

monotonicity. It therefore becomes a question of daily management for the farmer to optimize 

his use of resources spent on animal welfare. 

 

This thesis will, using a stochastic distance frontier, consider in which direction animal health 

and milk quality indicators, such as the number of reported diseases and values describing the 

udder health, influence the economic performance and technical efficiency of the farm.  
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5. Methodology  

The idea behind benchmarking is to compare the relative performance of firms that use the same 

type of inputs to produce similar outputs. When benchmarking firms in the same industry, it is 

possible to learn more about how different production processes affect the technical efficiency 

(Bogetoft & Otto 2011). This chapter will add to the Theoretical Framework in section 4 by 

introducing how we will estimate an econometric model using the Maximum Likelihood 

Principle to estimate a distance function as a stochastic frontier model. The model and the 

underlying assumptions will be described in the following.  

5.1 Stochastic Frontier Analysis  

The Stochastic frontier analysis (SFA) is a parametric approach, meaning that there should be 

made assumptions about the functional form and the distribution of the composed error term. 

The SFA assumes that both the production possibility set and the data generation process are 

known in advance, which allows the assumption of a stochastic relationship between the inputs 

used and the outputs produced. Even though the assumption can be seen as a disadvantage, it 

allows us to assume that the deviations from the frontier can reflect inefficiencies and noise in 

the data (Aigner et al. 1977; Meeusen & van Den Broeck 1977).  

The Parametric Approach 

In the parametric approach, we use actual observations from different firms to estimate the 

production function and we then use the estimated function to measure the performance of the 

individual firms. We estimate a value for the unknown parameters 𝛽 from the actual 

observations, 𝑥!   ,𝑦! , for 𝑘 = 1,… ,𝐾, where  𝐾 is the number of individual observations. 

Maximum Likelihood Estimation (MLE) is most commonly used when estimating with a 

parametric approach, which means that we choose the values of 𝛽 that makes the actual 

observations as likely as possible. The parametric approach suggests three options to explain 

why the actual observations deviate from the production function: 1) deviation can be viewed as 

noise as specified in an ordinary regression model, 2) deviation can be the result of inefficiency 

and 3) both explanations can be considered, which is the assumption behind a stochastic frontier 

approach (Bogetoft & Otto 2011).  
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The Ordinary Regression Model 

When using a production function for empirical analysis, an ordinary regression technique (OLS) 

can be used to estimate the parameters of the average production function, and is often a good 

starting point for analysing data. The general specification is:  

 

𝑦! = 𝑓 𝑥!;𝛽 + 𝑣! ,              𝑣!~  𝑖𝑖𝑑  𝑁 0,𝜎! ,                𝑘 = 1,… ,𝐾 

 

All deviations from the frontier are interpreted as measurement noise such as measurement 

errors, omitted explanatory variables or unusual conditions, and is represented by the error term, 

𝑣!. The simplest way to estimate the regression is to assume that all deviations are symmetric 

around zero and follow a normal distribution. When using OLS to estimate the regression 

function the estimated function will lie in the middle of the observations, with observations 

above and below the estimated function, as the sum of the residuals is zero (Bogetoft & Otto 

2011). 

Deterministic Frontier Model 

Instead of the OLS we can use a deterministic frontier model and assume that all the deviations 

are the result of inefficiency and use a model specified as: 

 

𝑦! = 𝑓 𝑥!;𝛽 − 𝑢! ,                𝑢!~  𝑖𝑑𝑑  𝐻,                  𝑘 = 1,… ,𝐾 

 

Where 𝐻 is a probability distribution of inefficiency.  

It differs from the OLS, as this model assumes that there is no noise in the data and that a priori 

assumption is made regarding the functional form. This model can be an interesting starting 

point and is considered the other extreme together with OLS. Assuming no noise in the data and 

that the functional form is given a priori, it has the same drawbacks as the DEA without the 

flexible frontier specification (Bogetoft & Otto 2011).  

Stochastic Frontier Model 

Combining the ordinary regression model and the deterministic frontier model the stochastic 

frontier model (SFA) can be defined. SFA combines the efficiency term 𝑢 with the error term 𝑣, 

and by doing this, the SFA model accounts for statistical noise, 𝑣, and technical efficiency, 𝑢 

(Aigner et al. 1977; Meeusen & van Den Broeck 1977). The SFA model is often estimated using 
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a maximum likelihood estimation, which requires distributional assumptions of the error terms. 

The general model is presented here: 

 

𝑦! = 𝑓 𝑥!;𝛽 + 𝑣! − 𝑢! , 

𝑣!~𝑁 0,𝜎!! ,                  𝑢!~𝑁! 𝜇,𝜎!! ,                𝑘 = 1,… ,𝐾 

 

Where 𝑣!~𝑁 0,𝜎!!  is a random noise term that follows a normal distribution with zero mean 

and variance 𝜎!! and represents the possible measurement errors of the inputs and outputs. 

𝑢!~𝑁! 𝜇,𝜎!!     is an unobserved non-negative term, which accounts for technical inefficiency 

and follows a truncated normal distribution with location parameter 𝜇 and scale parameter 𝜎!!. 

For 𝑢! = 0 the firm is considered 100% efficient. If, however, 𝑢! ≠ 0, the firm is subject to 

inefficiency, leading to a left skewed distribution of the combined error term.  𝑁! indicate a half-

normal positive distribution, which is a truncated normal distribution, where the point of 

truncation is 0 and the distribution is concentrated on the half-interval 0,∞  (Bogetoft & Otto 

2011).  

 

To make the estimation we need to know the density of the combined error term, 𝜖  

𝜖 = 𝑣 − 𝑢 

If we have a situation where 𝑣 dominates 𝑢, meaning a situation where the variance of 𝑣, 𝜎!!, is 

much larger than the scale parameter of 𝑢, 𝜎!!, then the distribution of the combined error term, 

𝜖, will resemblance a normal distribution and will thereby look like the distribution of 𝑣. We 

could also imagine a situation where 𝑢 dominates 𝑣. This would make the distribution of 𝜖 look 

like the distribution of 𝑢, which, as mentioned earlier, is a truncated normal distribution.  

 

When estimating the stochastic frontier, the estimation algorithm re-parameterizes the variance 

parameter of 𝜎!! and the scale parameter of the inefficiency term 𝜎!!, and instead it estimates the 

parameter 𝛾 (Battese & Corra 1977): 

𝛾 =
𝜎!!

𝜎!! + 𝜎!!
 

 

𝛾 lies between 0 and 1 and gives an indication of the importance of the inefficiency term. When 

𝛾 = 0, the inefficiency term, 𝑢, is irrelevant and the result should be equal to the OLS results. 
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When 𝛾 = 1, the noise term,  𝑣, is irrelevant and all deviations from the frontier are due to 

technical inefficiency.  

Maximum Likelihood Estimation 

The SFA method does not fulfil the minimal extrapolation principle. The principle states that the 

technology set should be the smallest set containing all data, but with the SFA method not all the 

data points will end up being below the estimated SFA line and the principle will not be fulfilled. 

This is the consequence for handling uncertainty in the model. Instead the model builds on an 

argument saying that data outside the derived technology set, are outside by pure chance and 

therefore it will not influence the way the technology set looks (Bogetoft & Otto 2011).   

 

When estimating SFA models our interest is in the unknown parameters 𝛽 and 𝑢. We want to 

decide on a value for the 𝛽 that is as close to the true value of the unknown  𝛽 as possible, i.e. 

parameter values are determined to make observations as likely as possible. The estimation 

software finds the parameter values by solving the maximization problem of the log-likelihood 

function. In large samples, maximum likelihood estimates are nearly unbiased, consistent, and 

efficient, thus they are close to the true value of the parameter and have variances close to the 

smallest possible variance. Furthermore, the estimated 𝛽, 𝛽, is normally distributed (Bogetoft & 

Otto 2011). 

 

The following log-likelihood function depends on the parameters to be estimated and the specific 

data (Bogetoft & Otto 2011): 

𝑙 𝛽,𝜎!, 𝜆 = −
1
2𝐾 log

𝜋
2 −

1
2𝐾 log𝜎

! + logΦ
𝜆 𝑦! − 𝑓 𝑥!;𝛽

𝜎!

!

!!!

−
1
2𝜎! 𝑦! − 𝑓 𝑥!;𝛽

!
!

!!!

 

 

The log-likelihood estimation is more convenient to work with than the likelihood estimation, 

since the natural logarithm makes the differentiation easier.  

5.2 The Input Output Distance Function  

There are several ways in which economic performance in a sector can be measured and 

evaluated. If information on prices is available along with a behavioural assumption, such as cost 
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minimisation or profit maximisation, then performance measures can be estimated by including 

this information. The standard SFA models only allow for one output in the production 

functions, and thus they can be difficult to apply on real life data, where multiple outputs often 

exist. There are two solutions to this problem (Bogetoft & Otto 2011). One is to use the multiple 

input and multiple output cost frontier, however, given that individual prices are not available in 

our dataset, estimating a stochastic cost frontier is not possible (Coelli et al. 2005). The second is 

to measure efficiency by using distance functions. Distance functions can be used to estimate the 

characteristics of multiple-output production technologies when price information is not 

available or when one can, due to regulation, assume if firms minimize costs or maximize 

outputs. Input distance functions tend to be used instead of output distance functions when firms 

have more control over inputs than outputs (Bogetoft & Otto 2011). The choice to use the 

stochastic distance function approach was made because the distance function can be a good 

measure of inefficiency when we have multiple inputs and outputs and no prices.  

 

A fully efficient farm will have an output distance function of 𝐷! 𝑥,𝑦 = 1 or an input distance 

function 𝐷! 𝑥,𝑦 = 1, which says that for an increasing 𝐷! it makes a better performing 𝑥,𝑦  

and for a decreasing 𝐷! 𝑥,𝑦  it makes a better performing 𝑥,𝑦 . An inefficient farm has either 

𝐷! 𝑥,𝑦 < 1 or 𝐷! 𝑥,𝑦 > 1. Distance functions can, in addition to describing the efficiency 

level, also describe the technology set, which can be defined as:  

 

𝑇 = 𝑥,𝑦 ∈ ℝ!
!×ℝ!

! |𝐷! 𝑥,𝑦 ≤ 1  

𝑇 = 𝑥,𝑦 ∈ ℝ!
!×ℝ!

! |𝐷! 𝑥,𝑦 ≥ 1  

 

We can introduce the measure of inefficiency 𝑢 into the output distance function, such that 

𝑢 ≤ 0 and: 

𝐷! 𝑥,𝑦 = 𝑒! 

From this it follows that 𝐷! 𝑥,𝑦 = 𝑒! = 1, when 𝑢 = 0 and 𝐷! 𝑥,𝑦 = 𝑒! < 1, when 𝑢 < 0. 

 

And introduce 𝑢 ≥ 0 into the input distance function such that:  

𝐷! 𝑥,𝑦 = 𝑒! 

It follows that 𝐷! 𝑥,𝑦 = 𝑒! = 1, when 𝑢 = 0 and 𝐷! 𝑥,𝑦 = 𝑒! > 1, when 𝑢 > 0. 
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Taking logs and due to the homogeneity condition, as stated in the properties, the distance 

functions can be turned into stochastic distance functions by also adding a random error term 𝑣 

(Bogetoft & Otto 2011): 

 

log𝑦! = − log𝐷! 𝑥, !!
!!

+ 𝑣 − 𝑢       and        − log 𝑥! = log𝐷!
!!
!!
,𝑦 + 𝑣 − 𝑢                        

 

As in the previous stochastic model we assume that 𝑣 and 𝑢 are independent and normally 

distributed, where 𝑢 is only half-normal. Because this model has the same form as the models 

explained earlier we can use the same methods of estimation.  

The Input Distance Function 

The first step in econometric estimation of an input distance function is to choose a functional 

form. The ones that will be considered in this thesis are the two listed in the theoretical 

framework. 

Assuming a Cobb-Douglas production function, the linearized general form of the Cobb-Douglas 

input distance function with multiple outputs can be written as:  

𝑙𝑛𝐷! 𝑥,𝑦 = 𝛼! + 𝛼!𝑙𝑛𝑦!

!

!!!

+ 𝛽!𝑙𝑛𝑥!

!

!!!

 

With 𝛼! = 𝑙𝑛𝐴 (Coelli et al. 2003).  

 

The Cobb-Douglas input distance function can be expressed as a stochastic frontier model, as 

linear homogeneity in inputs suggests that: 

 

𝐷! 𝑘𝑥,𝑦 = 𝑘𝐷! 𝑥,𝑦  

 

When exploiting that ln(𝐷! 𝑥,𝑦 ) ≥ 0 by 𝑢 (with 𝑢~𝑁! 𝜇,𝜎!! ) and adding an error term 𝑣 

(with 𝑣~𝑁 0,𝜎!! ) accounting for statistical noise, the following Cobb-Douglas input distance 

function can be estimated as a stochastic frontier model (Coelli et al. 2003):  

−𝑙𝑛 𝑥! = 𝛼! + 𝛼!𝑙𝑛𝑦!

!

!!!

+ 𝛽!

!!!

!!!

𝑙𝑛
𝑥!
𝑥!

+ 𝑣 − 𝑢           
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Since the Cobb-Douglas model is rather restrictive, the translog input distance should also be 

estimated and compared to the Cobb-Douglas model. Färe & Vardanyan (2016) present the 

general form of the translog input distance function as:  

 

𝑙𝑛𝐷! 𝑥,𝑦 = 𝛼! + 𝛼!

!

!!!

𝑙𝑛𝑦! +
1
2 𝛼!"

!

!!!

𝑙𝑛
!

!!!

𝑦!𝑙𝑛𝑦! + 𝛽!𝑙𝑛𝑥!

!

!!!

+
1
2 𝛽!"𝑙𝑛𝑥!𝑙𝑛𝑥!

!

!!!

+
!

!!!

𝜁!"𝑙𝑛𝑥!𝑙𝑛𝑦!

!

!!!

!

!!!

 

 

With 𝛼!" = 𝛼!"  ∀  𝑛,𝑚 and with 𝛽!" = 𝛽!"   ∀  𝑘, 𝑗. 

 

Like the Cobb-Douglas input distance function, the translog input distance function can, 

assuming linear homogeneity, be estimated as a stochastic frontier model.  

Dividing all the inputs by one of the inputs imposes linear homogeneity in inputs. Defining 

𝑙𝑛 𝐷! 𝑥,𝑦 ≥ 0 as 𝑢 (with 𝑢~𝑁! 𝜇,𝜎!! ) and adding an error term 𝑣 (with 𝑣~𝑁 0,𝜎!! ), the 

stochastic translog input distance model can be written as (Sipiläinen 2007):  

−𝑙𝑛𝑥! = 𝛼! + 𝛼!𝑙𝑛𝑦!

!

!!!

+
1
2 𝛼!"𝑙𝑛𝑦!𝑙𝑛𝑦!

!

!!!

!

!!!

+ 𝛽!𝑙𝑛
𝑥!
𝑥!

!!!

!!!

 

 

+
1
2 𝛽!"𝑙𝑛

𝑥!
𝑥!
𝑙𝑛
𝑥!
𝑥!

!!!

!!!

!!!

!!!

+ 𝜁!"𝑙𝑛
𝑥!
𝑥!

!

!!!

!!!

!!!

𝑙𝑛𝑦! + 𝑣 − 𝑢 

The Output Distance Function 

As the milk quota restriction was revoked in April 2015, most data for the last year in the dataset 

is from a time without an output restriction and hence we will also estimate a stochastic output 

distance function. Like with the input distance functions the output distance functions can be 

estimated as a stochastic frontier model by adding 𝑢 (with 𝑢~𝑁! 𝜇,𝜎!! ) and an error term 𝑣 

(with 𝑣~𝑁 0,𝜎!! ) accounting for statistical noise. This results in the following specification of 

the Cobb-Douglas output distance function (Henningsen et al. 2016):  

−𝑙𝑛𝑦! = 𝛼! + 𝛼!𝑙𝑛
𝑦!
𝑦!

+ 𝛽!𝑙𝑛𝑥!

!

!!!

!!!

!!!

+ 𝑣 + 𝑢                     
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Following the same approach as before the translog output distance function can be specified as 

(Olsen & Henningsen 2011):  

 

−𝑙𝑛𝑦! = 𝛼! + 𝛼!𝑙𝑛
𝑦!
𝑦!

+
!!!

!!!

1
2 𝛼!"

!!!

!!!

!!!

!!!

𝑙𝑛
𝑦!
𝑦!

𝑙𝑛
𝑦!
𝑦!

 

 

+ 𝛽!𝑙𝑛𝑥!

!

!!!

+
1
2 𝛽!"𝑙𝑛𝑥!𝑙𝑛𝑥!

!

!!!

+
!

!!!

𝜁!"𝑙𝑛𝑥!
𝑙𝑛𝑦!
𝑙𝑛𝑦!

!!!

!!!

!

!!!

+ 𝑣 + 𝑢 
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6.  Description of Dataset  

The data used in this thesis is provided by the Danish advisory firm SEGES. The dataset used in 

this thesis is based on the accounting data drawn from a large proportion of all commercial farms 

in Denmark. We were granted access to the data for all the farms in their database for which 

cattle related data was also available. The two datasets were merged by the specific observations 

“lbnr” and “Regnskabsaar” identifying each specific farm and year. The first database contains 

accounting data from 2011 to 2015 with 770 variables. The second database contains cattle 

related data also from 2011-2015 with 33 variables. In the combined unbalanced dataset, there 

are 3831 different farms and 14,323 observations. 

 

The farms registered at the accounting database at SEGES have voluntarily chosen to provide 

SEGES with their financial data. Because it is voluntary and takes a bit of work for the farmers 

to be registered, there could be a selection bias among the participants. However, it is rather 

random who choose to be registered and maintain their registration, which is why we are not 

concerned with a selection bias in the unbalanced dataset. Unlike for the accounting database it 

is mandatory to register death and birth of cows to the cattle database. Both the health indicators 

and the milk quality indicators, which will be used in this thesis, are not mandatory and this can 

explain why the availability of these indicators can differ from farm to farm. Like with the 

accounting database, the information, which will be used from the cattle database in this thesis, 

could be subject to a selection bias. 

 

The choice to use the cattle database from SEGES was made for us to be able to analyse the 

correlation between technical efficiency and milk quality and animal health indicators. However, 

the only information, which is mandatory for a farmer to report to the cattle database, is limited 

to the birth and death of an animal and hence all other factors are only available if the farmer 

wishes to report it. For the milk quality indicators, the farmers know the values of each of them, 

since the dairies measure the values whenever they collect the milk from the farmer, and hence 

reporting them only requires little time.  

6.1 Variables  

Given that the objective of this thesis is to analyse if milk quality and animal health indicators 

influence the efficiency of the farm, not all the available variables are relevant to this study. Only 

those factors, which are linked to the financial performance, milk quality, and the health of the 
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livestock, will be included. A milk production equation is created where output is explained by 

several input variables, and further an inefficiency equation is created containing those factors 

which are related to (in)efficiency. The following variables are defined as to best describe the 

important input and output variables used in diary production. Further certain variables related to 

the technology set are defined. Given that we have access to the type of milking system used by 

the farmers, it is added to our model, because it can influence how quickly an infection can 

spread within a herd. However, the validity of the milking system variable can be questioned, 

since information regarding the type milking system is not always up to date in the database. The 

chosen variables for the analysis are listed below in Table 6.1. 
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Table 6.1: List of Variables 

The milk production variables 
“grossmilk”  the gross output from milk production in DKK.  
“grossother” the gross output from all other products from production in DKK minus 

internally produced feed.   
“feedexp”  the total expenditures in DKK for the farm to externally bought feed.  
“vetmed”  the total expenditures in DKK for the farm to veterinaries, medicine, and 

vaccines.  
“labour”  labour input as wages to hired labour and owner remuneration in DKK (listed 

“totalwages” in the data script).  
“hours”  alternative labour input. Norm hours i.e. estimated total number of hours worked 

at the farm.  
“land”  the total arable land owned and rented measured in hectares.  
“materials” the materials used in the production in DKK less feed expenditures, depreciation, 

maintenance, medicine, veterinary, wages, and land taxes. 
“capital” the capital input measured in DKK. Is contains the capital stock times an interest 

rate, the value of the cows, general maintenance, and depreciation.   
Production characteristics (part of the technology set)  
“jersey”  a dummy for the breed Jersey.  
“large” a dummy for the large breed which contains RDM, SDM, mix of the two, and 

other types. 
“AMS” a dummy for the milking system AMS (Automated Milking System). 
“fishbone” a dummy for the milking system fishbone.  
“othersys” a dummy for other types of milking systems. 
“organic” a dummy for organic farms. 
The inefficiency variables* 
“mastitis” the number of mastitis disorders per cow per farm.  
“hoofdis” the number of hoof and limb disorders per cow per farm.  
“reprodis”  the number of reproductive disorders per cow per farm.  
“otherdis” the number of other diseases per cow per farm.  
“cell1”  a dummy for the farms which have an average cell count between 0-300 (1000 

cells/ml)   
“cell2” a dummy for the farms which have an average cell count above 300 (1000 

cells/ml)      
“viable1” a dummy for the farms which have an average viable count between 0-30 (1000 

viable/ml) 
“viable2” a dummy for the farms which have an average viable count above 30 (1000 

viable/ml) 
“spore1” a dummy for the farms which have an average spore count between 0-400 

(spores/litre) 
“spore2” a dummy for the farms which have an average spore count above 400 

(spores/litre) 
“managerage” the age of the manager of the farm. 
“consultant” a dummy for the use of a production consultant on the farm. 
Note: * For the dummies: TRUE = 1 and FALSE = 0 
Source: (SEGES 2013), (SEGES 2016), and own definitions and calculations 



46 

 

There are two outputs from production in our analysis: milk output and other outputs. Other 

outputs cover all other goods produced such as meat and cereal.   

 

The feed expenditures are included separately as an input factor, given that we are analysing 

farms using livestock in production. It covers all costs to externally bought feed and hence does 

not include internally produced feed. As we do not include any feed expenditures to internally 

bought feed, other output is less income from feed sold. As most of the feed produced on 

specialised dairy farms is used on the farm, any income from feed sold is assumed not to be from 

outside buyers. As we do not account for internally bought feed on the input side, the income 

from this post is also taken out of the output. Those farms that do not buy feed from external 

producers, are more land, labour, and capital dependent, and thus will not appear more efficient.  

 

The expenditures for veterinaries, medicine, and vaccines are included as a separate input factor. 

Because this thesis is concerned with the effect of animal welfare and technical efficiency it is 

relevant to look at an input factor directly linked to health.  

 

There are two different measures of labour input, which can be used: “labour” and “hours”. The 

estimated norm hours used on the farm are listed in the accounting database, by using a standard 

assumption of how many hours of work are needed for certain amounts of livestock and land. It 

is based on production equipment and farm size, which is why it might not reflect the actual 

hours spent working on the farm. The use of the variable “hours” in the estimation, removes the 

variation in labour productivity between the farms. This indicates the fact that, using norm 

“hours” instead of “labour” would mean that no productivity difference in labour usage will be 

included in the model, which is a rather strong assumption. 

The variable “labour” needs to be constructed using information from the dataset. Wages for 

hired labour are known in the dataset, so the problem is to determine the effort placed by the 

owner and his/her immediate family. The result before financing for personally owned 

businesses presented in the dataset, does not cover wages to the owner and his family. To 

compare results, it is necessary to construct an owner remuneration. If an owner remuneration is 

not assigned, then some farms can appear to be more efficient than others, due to the lower 

labour costs. The critical assumptions behind the construction of the labour input are that the 

presence of paid labour should lead to a bonus for the owner due to leadership. Income from an 
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outside job most likely implies a lower effort on the farm by the owner.   

The owner of a farm gets 300,000 DKK in owner remuneration. This is less any income he might 

have from an outside job and hence the wage represents his work on the farm. Further, the owner 

wage, which is constructed, assumes that for every hour spent working on the farm exceeding 

1665 hours there will be a supplement to the owner, which increases with the number of 

employees as it would if the job as a leader was done in another company. The supplement is 

approximately 25,000 DKK per employee and the maximum supplement the owner can receive 

is 450,000 DKK. The maximum remuneration for the owner is therefore limited to 750,000 

DKK.  

If present, the spouse should be paid if the income from a job outside the farm is small or non-

existing. There is believed to be a spouse, if there is family allowance, earnings from spouse or 

the family's manpower needs exceed 3,000 hours. If the spouse is working (part time) outside the 

farm, with an income below 300,000 DKK, then the spouse is getting paid for the work 

expectedly being done on the farm. The maximum remuneration for the spouse is 300,000 DKK. 

The composed owner remuneration was guided by Olsen (2016). The choice of labour input to 

use will be discussed later.  

The input of land can either be self-owned or leased/rented. The two types are combined to 

create the variable containing the quantity of land used in the production measured in hectares. 

Combining the two types ensures that all land input is considered, whether it is used for 

production or leasing. This way the farmer will not be considered overly efficient if there is an 

income from land not used in production (SEGES 2013).  

Materials cover all other intermediate inputs used in production. It is included because those 

farms buying feed do not use land, labour, and capital to produce the feed used in production and 

hence would appear to be more efficient. The variable covers variable costs such as seed, 

fertilizer, and pesticides. 

The capital input or consumption includes the capital stock times an interest rate + depreciation 

+ maintenance. From the dataset, these variables can easily be deducted. Capital stock is defined 

as the value of all agricultural assets minus value of land and housing. The capital stock is the 

value of the machinery, livestock, inventory, and agricultural buildings. Depreciation and 

maintenance is the sum of depreciation and maintenance on these assets plus investments that are 

fully depreciated in the specific year. The interest rate used in this thesis is an average bank 
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interest rate faced by private owned businesses in from October 2013 to December 2015 based 

on numbers available at Denmark’s Statistics (Statistik 2016c). The choice of capital valuation is 

based on the one used in Olsen & Henningsen (2011). The capital stock is the mean value of the 

capital stock in the beginning of the year and at the end of the year in order not to make farmers 

with investments either in the beginning or at the end of the year appear inefficient.  

The variables chosen for the inefficiency equation can all be of importance for the gross output 

for the farm. As already mentioned several studies have found that animal health is correlated 

with efficiency and economic performance and hence we wish to incorporate animal health 

indicators and other confounding variables. Given that the price the farmer receives for his milk 

depends on the level of milk quality indicators, there could be an incentive not to reduce the 

values of these variables once a certain level is reached. To better explain the effects of low 

values with regard to the milk quality indicators two dummies for each type of milk quality 

indicator are created. The first dummy, e.g. “cell1”, contains all those observations for which an 

allowance is obtained and the second dummy, e.g. “cell2”, contains all those observations that do 

not obtain a higher price along with those who face a deduction. The levels and the 

corresponding allowances and deductions are shown in Table 3.1.  

The production characteristics are part of the technology set used at the farm, and can help 

explain which type of technology improves productivity. Being organic can influence the choice 

of inputs and technology, however from Table A.1 in Appendix A it is clear that the production 

characteristics do not differ much among the organic and conventional farms used in the final 

dataset.  

The age of the manager is included, since it is an indicator for management experience, and 

thereby management skills. The use of a production consultant is included to see if external 

knowledge can help the farm to become more efficient. Given that the amount a farm spends on 

a production consultant is most likely related to the size of the farm, it was decided to include the 

use of a production consultant as a dummy.  

6.2 Imposing restrictions on the dataset    

We wish to impose certain restrictions, which allow us to exclude those farms that are not 

classified as dairy units. The FADN (Farm Accountancy Data Network) defines a specialised 

dairy farm as one having at least 35 percent of the total output from milk production (European 

Commission - EU FADN 2014). In this thesis, a specialized dairy farm, is defined as a one 
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having at least two thirds of standardized gross output from dairy production. This decision was 

made due to the fact that it is a general assumption in the literature analysing the production 

efficiency among full time dairy farmers (Sipiläinen 2007; Lawson, Bruun, et al. 2004).  

 

Table 6.2 shows the individual restrictions for the variables and the number of observations 

violating each restriction. The first four rows contain restrictions related to being a full time 

dairy farmer. Dividing the restrictions into two groups allowed us to see how many violations 

were caused due to not being a full time dairy farmer and how many were due to negative or zero 

input values. It should be kept in mind that the same farm could possibly violate a restriction up 

to five times in this dataset (because we are working with panel data) until we impose the 

restraint of each farm having to be present in the dataset for at least three years (lbnr ≥ 3), 

meaning that each individual violation does not necessarily represent the number of farms which 

violate a restriction.  
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Table 6.2: Restrictions on the dataset 
Restriction Explanation No. of 

violations 
grossmilkshare > 
0.66 

At least 66 percent of the total gross output is from milk 
production. 

3490 

grossmilkshare ≤ 1 The gross output from milk cannot exceed the total 
gross output. 

79 

hours ≥ 1665 Alternative labour input. Norm hours i.e. estimated total 
number of hours worked at the farm. A full-time farm 
has to spend at least 1665 hours on the farm per year. 

1287 

yearcows > 49 A full time dairy farm cannot have less than 49 cows, 
corrected for incoming and outgoing cows during the 
year. 

689 

Total number of 
violations* 

The total number of observations, which were excluded 
due to violations of the restrictions related to being a 
full-time dairy farmer. 

4873 

grossother > 0  The output from other goods produced should be 
positive.  

81 

feedexp > 0 The input of feed should be positive. 0 
vetmed > 0 Expenditures for veterinaries and medicine should be 

positive. 
5 

totalwages > 0 Wages and owner remuneration combined should be 
positive. 

0 

land > 0 The input of land should be positive. 79 
materials > 0 The material input should be positive. 2 
capital > 0 The input of capital should be positive. 3 
Total number of 
violations* 

The total number of observations, which were excluded 
due to violations of the restrictions related to having 
non-negative inputs.   

89 

lbnr  ≥ 3 Number of years with data per farm should be at least 3 
years when all the above conditions are also fulfilled. 

2021 

Note: * The restrictions did not exclude any farms, only observations.  
Source: Own calculations and definitions 

The different restrictions limited the dataset to only have positive input and output quantities and 

only full time dairy farms with three or more observations during the five-year period from 2011 

to 2015. The restrictions were imposed to remove non-meaningful observations and ensure strict 

essentiality. Further we had to exclude observations with no information regarding the cell, 

viable, and spore count as well as invalid values for the age of the manager. We end up having 

8198 observations for 1810 different farms in the dataset distributed over the years, as can be 

seen from Table 6.3.  
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Table 6.3: Number of farms per year 
Year 2011 2012 2013 2014 2015 

No. of 
farms 

1621 1615 1750 1707 1505 

Source: Own calculations based on dataset 

 

The distribution of the number of farms over the years can have been impacted by the price of 

milk, as we are using realized gross output. As seen in Figure 1.3 there was an increase in the 

price in 2013 and 2014 and a decrease in the price in 2015, which could partly explain the 

increase in number of farms in 2013 and 2014 and the decrease in number of farms in 2015. The 

price changes might have caused the gross output from milk to be less than two-thirds of the total 

output on some farms, in the years where the price on milk was low. How to handle price 

changes will be elaborated later.  

 

Some of the restrictions imposed on the data do not need an elaboration. All the input factors 

should be positive to fulfil the theoretical assumptions made in section 4. Furthermore, negative 

values are not valid and hence would bias the obtained results, partly because the variables used 

in the estimations will be logged.  

 

As already mentioned it is historically a standard assumption in the literature that a dairy farm 

should have at least two-thirds of the total gross output from milk, to be considered a full-time 

dairy farm. We use this assumption as we wish to focus on specialized dairy farms. 79 

observations had a gross output from milk, which exceeded the total gross output. This should 

not be possible since the total gross output consists of the gross output from milk amongst other, 

and hence these farms were excluded. To ensure that only full-time dairy farms were included, 

the hours spent working on the farm should be at least 1665 norm hours a year. This restriction 

alone did not exclude those farms with only a few cows, which is why the farms included where 

restricted to those with at least 49 cows per year controlled for incoming and outgoing cows in 

the herd.  

 

We have assumed that the gross output from other goods produced has to be positive. Since none 

of the farms in the dataset had a gross output from milk that was equal to the total gross output, 

this assumption is reasonable.  
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The input of medicine and veterinary services might not need to positive. However, it is rather 

unusual that a farmer does not have any expenses related to the health of his animals and given 

that we will use the natural logarithm to estimate our input and output distance functions, we 

need to exclude values of zero and less. The manager of the farm will always pay for the 

treatment of an animal if it is beneficial to the production, and hence those farms with higher 

expenditures to veterinarians and medicine are not necessarily less efficient than those with low 

expenditures. There are several ways in which the farm can choose to handle an infection and 

there can also be great variations in how long a cow is subject to an untreated infection (Raundal 

2016). Because there are great differences among the treatment procedures and the need for 

outside assistance by a veterinarian, it cannot be assumed that the less efficient farms are also 

those with higher expenditures to veterinarians and medicine.  

 

In the dataset, there were 439 observations for the age of the manager of the farm, which were 

listed as zero, and 12 observations, which were unrealistically high. Observations with a value 

smaller than 18 or greater than 90 were excluded to secure a true age distribution within the 

dataset. Since the estimation cannot be done with NA values, the choice of excluding unrealistic 

values had to be made. The value of zero is related to partnerships and limited liabilities 

companies, which will therefore not be included in the analysis.  

 

One very important restriction is that there should be data for each farm for at least three years. 

Given that we wish to estimate an effect of the health indicators over time, we need several 

observations for each farm.  

 

Overall, it is clear that the strictest restrictions are those requiring that the farms are full time 

dairy farms. It is unfortunate that these restrictions are excluding a rather large share of the farms 

in the original dataset. However, part-time dairy farms are not of interest because they might not 

be subject to the same problems and challenges or have the same resources as those who are 

producing milk full-time.  

 

For all three milk quality indicators, the dataset had several missing observations, which could 

indicate that some farmers do not find it necessary to prioritize reporting these numbers to 

SEGES. As already mentioned, these observations were removed. Unlike with the milk quality 

indicators, the requirement of being a full time dairy farmer removed all observations listed as 

NA for all four disorders from the dataset. However, for several observations, there were values 
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of zero reported cases of disorders. These observations were not removed, since they might not 

be false, however they could reflect that some farmers tend to report a value of zero instead of 

NA whenever they do not have the correct information available. This could affect how much 

influence a disorder has on efficiency in the estimation. Knowing that the variables we will use 

from the cattle database are reported voluntarily, a selection bias might exist.  

 

From Table A.2 in Appendix A we see that for all three milk quality indicators, more 

observations in the dataset are in the first groups, indicating that overall the farms in the dataset 

have good values for the milk quality indicators, which is the general tendency among the 

Danish dairy farmers (Landbrug og Fødevarer 2016). Figure A.1 in Appendix A shows that the 

reported number of diseases per cow is rather low and Table A.3 also shows the percentage of 

zero reported cases of disorders. The potential lack of consistent data and selection bias will be 

discussed later.  

6.3 Prices over time  

Working with panel data we need to control for price changes over the years. To incorporate a 

price index, the price development of inputs and outputs are assumed to be identical for all 

farmers since input quantities are not known (except for land). Even though it is a common 

assumption within economics, it can be misleading since the differences in the economic 

performance among the farmers in the dairy sector could be due to different input prices over the 

years. However, it is a necessity to be able to handle inflation.   

 

Following Rasmussen (2010), the Törnqvist index will be used to describe price changes over 

time. The Törnqvist index allows for more sector specific prices, which helps provide a more 

precise estimate of the price development experienced by the Danish dairy farmers compared to 

the general consumer price index. Since a few of the input variables and the output variable for 

other output contain several different elements, the problem is to determine the different types 

within the variables and their shares.  

 

Other output contains grains and cattle related products other than milk but not internally 

produced fodder. By computing the share of each type of output for the whole sample we find 

the average share of each type of output out of the total. The shares have been used as allocation 

keys as to how much the price development of each good should influence the total price index 

for other outputs. The different output elements and the price index for each output is listed in 
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Table A.4 in Appendix A. The same approach was used to determine the different input types in 

the input variables “feedexp” and “materials”. For the inputs the different elements and the price 

index for each type of input is listed in Table A.5 in Appendix A.  

 

We have chosen to use the price index for the agricultural sector available at Denmark’s 

Statistics (Statistik 2016f) for all outputs and inputs except for total wages. The choice was based 

on a wish to use the same database for all the goods, to ensure that that all prices have been 

subject to the same calculation methods. Due to the lack of a price index for wages, we used the 

nominal wages from 2010 to 2015 (Statistik 2017b) and converted each wage rate into 2010-

level using a price converted from Denmark’s Statistics (Statistik 2017a) and calculated the 

development for each year in relation to 2010.  

 

The prices were converted into 2010-values using appropriate price indices for variables 

expressed in monetary terms for all five years. Having deflated the prices, all values in our 

empirical analyses will be at the price level from 2010. The price index for agricultural goods at 

Denmark’s Statistics (Statistik 2016f) uses 2010 as the index year, which is the reason why all 

prices used in this thesis also will be at 2010-level. Having converted the nominal values into 

real values, differences in technical efficiency and performance cannot be explained by price 

differences and changes in the next chapters of this thesis.  
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7. Empirical analysis  

Three steps will be used for the empirical analysis in this thesis. The first step is to test for non-

random sample selection, the second is a correlation analysis, and the third is to use the 

stochastic frontier framework to perform the efficiency analysis.  

7.1 Test for non-random sample selection 

The first step is to check whether the final dataset is representative of the whole sector. Given 

that some observations were excluded due to not being meaningful, the test will not be based on 

the whole sample, but on the sample including only those observations with positive input 

quantities.  Furthermore, we only wish to look at full time dairy producers, and therefore the 

restriction stating that at least two thirds of the total should be from milk production, needs to be 

included. We end up testing all 3831 farms, less the negative invalid observations, which were 

removed due to the restrictions listed in Table 6.2, against the final data sample that includes 

those 1810 farms for which data also was available for three or more years. We use a Welch’s 

two-sample t-test to see if the mean values of the continuous variables such as recorded number 

of mastitis differ significantly between the two groups, and we compare the shares of the 

categorical variables (dummy variables) between the two groups.   

Given the rather big sample size, excluding observations from the dataset with invalid values 

should not in itself create a selection bias. Further one could argue that invalid values would bias 

the dataset and hence the comparison would not be of much use.  

7.2 Correlation Analysis 

The second step is to investigate the relationship between the milk quality indicators, the animal 

health indicators, and the economic performance. This is done by using scatter plots and 

Pearson’s correlation coefficient. As indicator of economic performance, we use the gross 

margin per cow, which is defined as the total revenues from milk for each farm less the costs 

associated with milk production, such as feed and veterinary costs. The milk quality indicators 

are the dummy variables for the cell, viable, and spore count in the milk and the animal health 

indicators are the number of reported cases of mastitis, hoof and limb disorders, reproductive 

diseases, and other types of disorders per cow. We also investigate the relationship between 

economic performance and other possible confounding factors such as whether the farm is 

organic and the age of the manager.  
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As a contribution to the correlation analysis an OLS regression is estimated to investigate the 

relationship between economic performance and the milk quality and health indicators. Contrary 

to the correlation analysis this method can control for confounding factors because it investigates 

the effects of multiple variables at one time. However, assuming both individual and time 

effects, we do not expect the OLS estimation to provide a true result. Specifications of the OLS 

estimation can be found in Equation B (Section 13.2.1) and Table B.2 in Appendix B. 

7.3 Technical efficiency analysis  

The third and last step is to use a stochastic frontier approach to examine how the milk quality 

indicators and the animal health indicators are related to technical efficiency. Since most of the 

data is collected during a time under the restriction of a milk quota, an input distance function 

might be a better fit to the data, given that output, for the most part, is restricted and hence could 

be assumed to be fixed. However, since the Danish dairy producers did tend to produce 

strategically above their quota and since the quota was abolished in 2015, which is the last year 

in our dataset, it can be relevant to estimate an output distance function to compare it with the 

input distance function, to see if the orientation of the model affects the efficiency.  

In addition to the distance functions, an inefficiency equation explaining different input and 

output choices and results will be included in the estimations.  

Input Distance Stochastic Frontier 

The following Cobb-Douglas input distance stochastic frontier is estimated: 
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Where we have 𝑁 = 6 inputs of 𝑥 and 𝑀 = 2 outputs of 𝑦, 𝑡 denotes the year, 𝛼! is an estimate 

with respect to output quantities, 𝛽! is an estimate with respect to input quantities, 𝜌! is an 

estimate with respect to time, 𝜑 is an estimate with respect to production characteristics and are 

all coefficients to be estimated. Subscript 𝑖 denotes the individual farm, 𝑣!"~𝑁 0,𝜎!!  is a 

random noise term which follows a normal distribution with zero mean and variance 𝜎!!, and 

𝑢!"~𝑁! 𝜇!" ,𝜎!!  is an unobserved non-negative term which accounts for technical inefficiency 

and follows a truncated normal distribution with location parameter 𝜇!" and scale parameter 𝜎!!.  
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In many empirical cases, the output quantity does not only depend on the input quantities but 

also on some other variables, e.g. the manager’s experience and in agricultural production also 

the soil quality and rainfall. If these factors influence the production process, they must be 

included in applied production analyses in order to avoid an omitted-variables bias (Battese & 

Coelli 1995).  In our thesis, technical inefficiency can be related to milk quality indicators, 

animal health indicators, and other confounding factors. Following Battese and Coelli (1995) we 

use the following model specification of the location parameter of the technical inefficiency 

term:  
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Because of the nature of the data used in this thesis, and the fact the Cobb-Douglas input 

distance function is rather restrictive, the following time-dependent translog input distance 

function will also be estimated:  
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Where we once again have 𝑁 = 6 inputs of 𝑥 and 𝑀 = 2  outputs of 𝑦, 𝑡 denotes the year, 

𝛼,𝛽, 𝜁,𝜌!, and 𝜑 are the coefficients to be estimated, and subscript 𝑖 denotes the individual farm. 

 

Following Battese and Coelli (1995), described in the methodology, the parameters of the model 

are estimated using the method of maximum likelihood. We jointly estimate the stochastic 

frontier input distance function and the inefficiency model using the maximum likelihood 

method, as this method results in consistent estimates of all the model parameters.  
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Output Distance Stochastic Frontier 

The output distance function can be estimated using the same estimation methods as for the input 

distance function. The following Cobb-Douglas output distance stochastic frontier can be 

specified:  
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Following the same approach as before, the translog output distance stochastic frontier can be 

specified as:  

 

−𝑙𝑛𝑦!"# = 𝛼! + 𝛼!𝑙𝑛
𝑦!"#
𝑦!"#

+
!!!

!!!

1
2 𝛼!"

!!!

!!!

!!!

!!!

𝑙𝑛
𝑦!"#
𝑦!"#

𝑙𝑛
𝑦!"#
𝑦!"#

                                                                                                      (5) 

+ 𝛽!𝑙𝑛𝑥!"#

!

!!!

+
1
2 𝛽!"𝑙𝑛𝑥!"#𝑙𝑛𝑥!"#

!

!!!

+
!

!!!

𝜁!"𝑙𝑛𝑥!"#
𝑙𝑛𝑦!"#
𝑙𝑛𝑦!"#

!!!

!!!

!

!!!

 

+ 𝜌!   
!

!

𝑅𝑒𝑔𝑛𝑠𝑘𝑎𝑏𝑠𝑎𝑎𝑟 + 𝜑!𝑚𝑖𝑙𝑘𝑖𝑛𝑔𝑠𝑦𝑠𝑡𝑒𝑚2!" + 𝜑!𝑚𝑖𝑙𝑘𝑖𝑛𝑔𝑠𝑦𝑠𝑡𝑒𝑚3!" 

+𝜑!𝑗𝑒𝑟𝑠𝑒𝑦!" + 𝜑!𝑜𝑟𝑔𝑎𝑛𝑖𝑐  !" +   𝑣!" − 𝑢!" 

 

 

 

 

 

 

 

 

 

 



59 

8. Results  

8.1 Test for non-random sample selection  

Table 8.1 presents the results of the Welch’s two sample t-tests for the continuous variables and 

the shares for the categorical variables. This is done to see the differences between the farms that 

are included in the analysis and the farms which are excluded from the original dataset, due to 

the implemented restrictions. The farms in the first column satisfy the restrictions related to 

being a full-time dairy farm with more than 49 dairy cows and only positive inputs, whereas the 

farms in the second column also satisfy the restriction of having data available for 3 or more 

years. Both datasets do not include invalid values for input factors. This is done in order not to 

avoid bias, as a comparison based on data including invalid values could lead to this. We test the 

null hypothesis that there is no difference between the two groups.  

Table 8.1: Test for non-random sample selection 

    
Full time farms 
with positive 

input quantities 

Full time farms 
with positive 

input quantities 
and data for 3 or 

more years 

p-value 

  Number of farms 3831 1810   
                             Mean 

Reported 
diseases 
per cow  

Mastitis  0.11 0.11 0.788 
Hoof and limb diseases  0.14 0.14 0.876 
Reproductive disorders   0.18 0.18 0.745 
Other disorders  0.03 0.03 0.898 

 Manager age  49.0 49.0 0.886 

 
 

                   Percentage share 
 Milk 

quality 
indicators  

Cell 1 0.90 0.91  
Viable 1 0.94 0.95  
Spore 1 0.85 0.85  

Breed Jersey 0.11 0.11  
Milking 
system 

Fishbone 0.49 0.49  
Other 0.27 0.26  

 Organic 0.17 0.18  
  Consultant  0.87 0.87  
Source: Result obtained from R  

The tests show that removing approximately 53 percent of the farms from the dataset, due to the 

restrictions, does not bias the dataset in relation to the continuous variables. Further we see that 

the shares of the dummy categories presented in the first column, do not differ much from the 
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shares presented in column two. The remaining farms seem representative for the whole sample 

of full-time dairy farms.  

8.2 Correlation Analysis  

Before estimating the input and output distance models, we simply test the correlations between 

the economic performance of the farm and the health and the milk quality indicators along with 

certain production characteristics. This is done to provide some background knowledge of the 

data before estimating our function. The gross margin (GM) is defined as the gross output from 

milk production less expenditures related to milk production, which are feed, veterinary, and 

medicine expenses. As we use the GM per cow in relation to milk output in the correlation and 

linear regression analysis, we need to account for the costs to internally bought feed, which has 

been left out until now. We assume that the costs of internally bought feed must be greater than 

zero, like for the other inputs. This assumption excludes 456 observations, however these 

observations are only left out in the correlation and linear regression analysis. Here the sole 

purpose is to determine to what extent health and milk quality indicators can explain the 

economic performance of the farm in relation to milk production. The expenditure to internally 

bought feed is deflated with the same price index as for the feed variable. For the efficiency 

analysis, internally bought feed is still not included.  

The correlation analysis between the GM per cow and the number of reported diseases per cow 

is graphically presented in Figure 8.1 and the test-results can be read from Table B.1 in 

Appendix B. When the correlation coefficient is equal to 1, it corresponds to a perfect positive 

relationship between the two compared variables.  

For all four types of diseases there is a weak but significant correlation between the number of 

reported diseases per cow and the GM per cow. The correlation coefficients obtained, show that 

there is no strong linear relationship between the two. However, the number of reported diseases 

per cow has a positive effect on the GM per cow, which is unlike what one would expect. 
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Figure 8.1: Gross margin per cow (DKK) and the number of reported diseases 

Source: Own plots from R.  

We find that there is a rather small but significant and positive relationship between the dummies 

for low milk quality indicators and the GM per cow, as can be seen from Table B.1 in Appendix 

B. The positive correlation, is what one would expect, since a high milk quality leads to a higher 

price on the milk sold.  

The correlations between the GM per cow and the different types of milking system do not show 

strong linear relationships. However, both fishbone and other systems are significantly different 

than the AMS. The fishbone system has a positive impact on the GM per cow, compared to the 

AMS, whereas it is the opposite for other types of systems. From the boxplot in Figure 8.2 it is 

clear to see that there are only very small differences in the effect on GM per cow for the three 

types of milking systems. 
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Figure 8.2: Gross margin per cow (DKK) and the type of milking systems 

 
Source: Own plots from R.  

Another factor that can influence the economic performance is the type of breed. Table B.1 in 

Appendix B shows the results of the correlation analysis between the GM per cow and the type 

of breed, which in this case again indicates a significant but positive small correlation in favour 

of the jersey breed. From Table B.1 in Appendix B we see that the GM per cow decreases when 

the manager gets older and that the presence of a production consultant increases the GM per 

cow. Both variables are significant. The only variable without significance is organic.  

 

The overall picture of the correlation analysis gives an impression of very weak correlations 

between all the analysed variables and the gross margin per cow. The number of reported cases 

of diseases seem to have a positive and statistically significant effect on the GM, even though it 

does not make logical sense that an increasing number of diseases would increase the gross 

margin.  

One explanation to this result is that the sector has been focusing more and more on how to 

increase the milk yield per cow while ignoring the health consequences of doing so. The focus 



63 

on breeding better performing cows, has caused them to be less robust, and hence more 

vulnerable to catch and develop diseases (Beskyttelse n.d.). The better performing cows could 

therefore also be those with higher risk of getting more diseases. The milk quality dummies are 

all significant, and prove to have a positive effect on GM, which is what one would expect, since 

a higher milk quality yields a higher price. Both the type of milking system and breed seem to 

have significant impacts on the GM per cow, but still with very low correlation coefficients. 

Generally, we obtain very low (close to zero) correlation coefficients, indicating that the 

variables have very weak linear relationships with GM per cow and therefore one should be 

careful about concluding anything definite from these results.      

 

Unlike the correlation analysis, we find that several of the estimated variables from the linear 

regression model have a significance level of either 5 or 1 percent. The results from the linear 

regression estimation can be found in Table B.2 in Appendix B, along with the interpretation of 

the estimated results.  

8.3 Technical Efficiency Analysis  

As presented in the theoretical framework, multiple parametric functional forms exist, and hence 

choosing the most suitable model for the data is arguably an empirical question. After creating 

the dataset and validating both the variables and the period in which the data is from, the 

decision with regards to functional form can be made.  

Table 8.2: Descriptive Statistics 

Source: Own calculations.  

 

Variables Measure Mean Std. dev 
Outputs:       
grossmilk DKK 4,540,745 2,996,938 
grossother DKK 929,628 696,328 
Inputs:    
feedexp DKK 1,480,601 1,104,571 
vetmed DKK 121,289 78,091 
labour  DKK 817,819 559,407 
hours Hours 6,248 3,038 
land Hectares 165       90       
materials DKK 1,341,029 780,186 
capital DKK 1,514,013 938,433 
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The Input Distance Estimation 

The first estimation is of the Cobb-Douglas input distance frontier function. This is done using 

the “frontier” package in R made by Coelli & Henningsen (2013). We use mean scaled quantities 

to be able to interpret the distance elasticities at the sample mean (Henningsen 2014). By 

dividing all the inputs by one of the inputs, linear homogeneity in inputs is imposed. In the 

estimation, all the inputs are divided by the material input. The estimation is done based on 

equation (1) and adding the inefficiency equation specified in equation (2). The results we obtain 

shows that the residuals from the Cobb-Douglas estimation are right skewed and that the 

estimation is very close to the OLS estimation, which indicates that no inefficiency is present. 

However, this result could also be due to a miss-specified model and hence, it is worth analysing 

if other models can handle the data differently. As the Cobb-Douglas functional form is 

restrictive and not suitable in this case, we additionally estimate a translog input distance 

function (TL IDF). The estimation of the TL IDF is done based on equation (3), adding the 

inefficiency equation, 𝜇!", specified in equation (2). 

Several model specifications for the translog input distance function was estimated and tested 

prior to the selection of the final model. We first estimated our general translog model, which 

included all the inefficiency variables, specified in equation (2). We use a log-likelihood ratio 

test to compare the stochastic frontier (SFA) model with a standard ordinary least squares (OLS) 

model. The OLS model assumes that gamma, 𝛾, is equal to zero. The null- hypothesis of the test 

states that there is no inefficiency, and therefore only statistical noise is present, and the OLS 

model is suitable. In this case, the log-likelihood ratio test provides a very small p-value (p-

value: 0.000), which leads to a clear rejection of the null-hypothesis. This indicates that there is 

input oriented technical inefficiency and consequently leads to a favouring of the translog input 

distance model.  

To see if more simple model specifications could be favoured, three restricted models were also 

estimated and compared to the general translog input distance frontier. The first restricted model 

limited the inefficiency term 𝜇!" to only include the health indicators along with the age of the 

manager and the dummy for the production consultant; the second to only include the milk 

quality dummies along with the age of the manager and the dummy for the production 

consultant, and the third include the health indicators and the milk quality indicators. A log-

likelihood ratio test clearly indicates that the general model is preferred to the first two restricted 

models; however, the fit of the third restricted model is not significantly worse than the fit of the 
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general model (test statistic: 13.63; p-value: 0.001). The chosen model going forward thus 

contains seven inefficiency variables (the four health indicators and the three milk quality 

indicators) and all the variables linked to production. We found that both the age of the manager 

and the consultant dummy were insignificant to the models, and hence they are excluded. 

Summary statistics for all the estimated but rejected models can be found in Appendix C.  

The summary statistics show the estimated 𝛾 parameter to be 0.56, which indicates that both 

statistical noise and technical inefficiency are important, but inefficiency is considered more 

important than noise. As 𝜎!! is not equal to the variance of the inefficiency term 𝑢!", the 

estimated parameter cannot be interpreted as the proportion of the total variance that is due to 

inefficiency (Bogetoft & Otto 2011).  

Following from this, one could test the null hypothesis of no inefficiency by simply testing 

whether 𝛾 is equal to (or does not significantly deviate from) zero. However, in this case a t-test 

of the null hypothesis 𝛾 = 0 is not valid, because 𝛾 is bound to the interval [0, 1] and hence, 

cannot follow a t-distribution. Another way of getting an indication of whether inefficiency is 

present is to check the skewness of the residuals. For the chosen model, a check for skewness 

returns a value of -0.20, and hence the residuals are left skewed, which is indicative of the 

presence of technical inefficiency among the dairy producers. All in all, the chosen TL IDF 

appears to be suitable.  

The next decision is on which variable to use for labour input, as the suitability of both “labour”, 

measured in wages and owner remuneration, and “hours” should be considered. The estimation 

parameters of the restricted model (4) can be compared to the same parameters of a similar 

model, where the only difference between the models is the use of “hours” instead of “labour” as 

the labour input. The differences between the two models are specified in Table 8.3.  
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Table 8.3: Comparison of labour and hours as inputs in the TL IDF model 
  TL IDF labour TL IDF hours 
Mean efficiency  0.95 0.96 
Mean input elasticity of labour input  0.08 0.30 
Mean Elasticity of scale  1.05 1.10 
No. of implausible estimates of elasticity of scale (Escale 
<0.5 | >2)  

3 1 

No. of observations with monotonicity (input) 7555 7647 
Share of observations with monotonicity (input) 0.92 0.93 
No. of observations with monotonicity (output) 8184 8180 
Share of observations with monotonicity (output) 0.99 0.99 
No. of quasi-concave observations  1034 7953 
Share of observations with quasi-concavity  0.13 0.97 
Source: Model result and calculations from R.  

The mean efficiencies for the estimations are 0.95 and 0.96. Since they are both different than 

one, inefficiency is present. In a situation with no inefficiency it would imply that 𝑢 = 0 and all 

observations would be on the frontier. 

 

When looking at the mean elasticity of labour input we see a great difference. In the model using 

“labour”, a one percent decrease in the labour input would, ceteris paribus, result in an 

efficiency gain of 0.08 percent, whereas it would be 0.30 percent in the model using “hours”. 

This indicates that reducing the labour input in the model with “hours” would increase technical 

efficiency more than in the model with “labour”.  

For the input distance function, 𝐷! 𝑥,𝑦 , the elasticity of scale is equal to the inverse of the 

negative sum of the distance elasticities with respect to the output quantities:  

𝜖 = − 𝜖!!

!

!!

 

When 𝜖 > 1, the estimated elasticity of scale indicates increasing returns to scale (Henningsen 

2014). For both models the estimated elasticity of scale is larger than one, but a difference is 

present between the elasticity of scale measures, as the model with “hours” has a substantially 

larger elasticity of scale at the mean. Both models contain at least one implausible estimate of the 

elasticity of scale. The model with the “labour” variable included has more than twice as many.  

 

When the assumption of monotonicity is fulfilled, 𝐷! 𝑥,𝑦  is non-decreasing in 𝑥. This is the 

case if its first order derivatives with respect to input quantities are non-negative. This means 
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that when all the elasticities related to the input quantities are positive in the input distance 

estimation, monotonicity in input quantities is satisfied. For both models this condition is 

satisfied at the mean.  

 

It follows that, 𝐷! 𝑥,𝑦  is non-increasing in 𝑦 if its first order derivatives with respect to output 

quantities are non-positive, when the assumption of monotonicity is fulfilled. When the distance 

elasticities of the estimated translog input distance function with respect to outputs are negative, 

it implies that the estimated first order derivatives are negative, and monotonicity in output 

quantities is fulfilled at the mean. For both the models we find that the output elasticities are 

negative, and that the assumption of monotonicity is fulfilled at the means and almost fulfilled 

for all observations. The total number of observations, which are monotone, is almost the same 

for the two models. 

 

The elasticity for “materials” can be contained using the homogeneity restriction, where all input 

elasticities should sum to 1, which is what we find in both our estimated models.  

 

We test whether the estimated translog input distance functions are concave in input quantities 

and quasi-concave in output quantities at the frontier, and find that both models violate the quasi-

concave conditions for some of the observations; however, it is almost fulfilled for all 

observations for the model with “hours”.  

 

Conclusively, the model with “hours” appears to be a slightly better fit. This is not surprising 

since the estimated use of hours is based on the other inputs, and thus “hours” could be heavily 

correlated with the other inputs. The decision on what model to use going forward must also be 

based on which variables reflect the production decisions the best. Whether “labour” or “hours” 

account for the labour input better, is an empirical question as well as an arbitrary decision 

depending on beliefs of which variable represents the reality best. Using “hours” would indicate 

that no productivity difference in labour usage is included in the model, which is a rather 

problematic assumption to make. Considering this, the model with “labour” is selected for 

further analysis.  

As already displayed in Table 8.3 the chosen TL IDF does not fulfil the monotonicity condition 

for all observations in the sample; however, the condition is satisfied at the sample mean for each 

variable, as can be seen from Table 8.4. From Table 8.4 the number of violations of the 
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monotonicity assumption for each output and input elasticity are also listed. The two inputs, 

which violate the monotonicity assumption most frequently, are “veterinary and medicine” as 

well as “labour”. This is not rather surprising since the medicine consumption is not directly 

linked to production, which suggests that an increase in the medicine input will not necessarily 

directly generate more output, but only help the well-being of a sick cow.  

The fact that “labour” violates monotonicity is more difficult to explain and could be due to the 

more complicated definition of the labour variable, which includes owner remuneration and 

wages. As a large share of the violated monotonicity can be explained by these two variables, it 

will not be imposed even though procedures to do so are available. Often monotonicity is not 

imposed as it can be rather complex to do so (Henningsen & Henning 2009). We did check for 

the implication of the monotonicity violations by removing the violated observations, but when 

looking at the means of the elasticities without violated observations, no severe differences were 

found. The mean elasticities for the observations fulfilling the monotonicity assumption can be 

found in Table B.3 in Appendix B.  

The model violates the quasi-concavity conditions for most of the observations, which can be 

solved by imposing global restrictions, but this could also result in a less flexible functional form 

(Lawson, Agger, et al. 2004). This assumption is often violated when using SFA, and we will not 

impose the restriction in this case (Sauer. J, Frohberg. K, Hockmann 2006). As mentioned earlier 

Henningsen and Henning (2009) propose to check for quasi-concavity but not to impose it, as there 

in reality could exist several reasons as to why the estimation cannot fulfil this condition. The 

property of linear homogeneity in 𝑥 is not fulfilled, as the quasi-concavity condition is violated and 

there is increasing return to scale. This can be due to the heterogeneity-causing factors, which were 

included in the inefficiency equation 𝜇!" (Sipiläinen 2007).  

 

The estimation results of the chosen translog input distance function can be found in Table B.4 in 

Appendix B. The results cannot be directly interpreted, and hence the elasticity for each variable 

is calculated. In Table 8.4 the mean elasticities for input and output are displayed along with the 

individual number of violations of the monotonicity condition. 

Looking at our input variables we find that feed expenditure has the largest effect on technical 

efficiency. When feed expenditure decreases with one percent then, ceteris paribus, the distance 

to the frontier decreases and technical efficiency increases with 0.33 percent.  
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Table 8.4: Distance elasticities TL IDF 
             Mean          St. Dev. Violations of 

monotonicity 
Milk output -0.79 0.06 0 
Other output -0.17 0.05 14 
Feed 0.33 0.07 1 
Veterinary and medicine 0.03 0.02 186 
Labour 0.08 0.04 380 
Land 0.19 0.04 1 
Capital 0.18 0.06 98 
Materials 0.19 0.04 3 
Mean Elasticity of Scale  1.05 0.12   
Source: Own calculations based on model result from R.  

Like with the estimated coefficients for the inputs and outputs, the effects of the production 

variables should be calculated to find the exact effects. From the estimated results presented in 

Table B.4 we can obtain the standard deviations for the production variables and since they are 

all very small, we can trust the calculated marginal effects presented in Table 8.5 (Olsen & 

Henningsen 2011).  

Table 8.5: Marginal Effects of production variables TL IDF 
                Effect in percent               p-value  
Regnskabsaar 2012 0.89 0.009 
Regnskabsaar 2013 -5.09 0.000 
Regnskabsaar 2014 -4.18 0.000 
Regnskabsaar 2015 4.39 0.000 
Milking system 2 (fishbone) 2.71 0.000 
Milking system 3 (other) 1.91 0.000 
Jersey 3.63 0.000 
Organic -0.27 0.336 
Source: Own calculations based on model result from R.  

From Table 8.5 we can see that most of the production variables are significant. The effect of 

both milking system 2 and 3 is positive and significant, meaning that those who use milking 

system 2 or 3, compared to milking system 1, lie on a lower frontier. Thus, both systems require 

less input than milking system 1 to produce the same amount of output. The results presented in 

Table 8.5 suggest that the AMS is not as productive as fishbone or other milking systems.   

The production variable with the largest effect on productivity is “jersey”, which indicates that 

having “large breed” requires more inputs in order to obtain the same level of output, compared 
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to jersey and thus farms with jersey cows are, ceteris paribus, 3.63 percent more productive than 

farms with large breed.   

It is worth noticing the year dummies for 2012 and 2015, since they show that the farms were 

better at transforming inputs to outputs in both years compared to 2011. In 2012 the farms were 

generally more productive and they experienced an increase in the farm size and milk yield, 

compared to 2011 (Andersen & Hansen 2012). The dummy for 2015 could be explained by the 

abolishment of the milk quotas, which made it possible to produce more milk than in previous 

years, hence caused production to expand.  

The only variable without any significance is organic, meaning that organic productions are 

neither more nor less productive than conventional productions.  

The last part of the estimation contains the effects of the inefficiency variables. Once again, the 

estimated coefficients cannot be directly interpreted. The calculated marginal effects of the 

inefficiency variables are presented in Table 8.6.  

Table 8.6: Marginal effect of inefficiency variables TL IDF 
  Mean effect in 

percent   Minimum  Maximum      p-value  

Mastitis -0.0157 -0.0345 -0.0019 0.015 
Hoof and limb disorders 0.0007 0.0000 0.0015 0.706 
Reproductive disorders -0.0234 -0.0514 -0.0028 0.000 
Other disorders -0.0047 -0.0104 -0.0006 0.398 
Cell 1 0.0182 0.0022 0.0399 0.000 
Viable 1 0.0135 0.0016 0.0297 0.000 
Spore 1 0.0124 0.0015 0.0273 0.000 
Source: Own calculations based on model result from R.  

From Table 8.6 we see that only two out of the four types of disorders are significant. 

Occurrences of hoof and limb disorders as well as other disorders cannot explain inefficiency. 

Experiencing more cases of mastitis and reproductive disorders will on the other hand decrease 

the inefficiency term 𝑢!", which then increases the distance function and the distance to the 

frontier, thus making the farmer less efficient. This is what we expected as diseases tend to lower 

the quantity and quality of the milk output.  

Overall, we see that all three milk quality indicators are highly significant but that they only 

affect inefficiency very little. All three variables are dummies representing those who receive a 
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supplement to the standard price on milk. The marginal effect of all three variables is positive 

meaning that having low milk quality indicators will increase the inefficiency term 𝑢!", which 

then decreases the distance to the frontier thus making the farmer more efficient. Not 

surprisingly we see that a higher milk quality has a positive effect on efficiency. 

Dairy farmers operate in a market, which is close to perfect competition, meaning that they are 

price takers. Therefore, even small efficiency gains should be considered. We see that those who 

have a cell count below 300,000 have, ceteris paribus, a higher technical efficiency of 0.018 

percent. As we see from Table 8.6 there is a small difference between the minimum values and 

the maximum values of the inefficiency variables, why we consider the estimated mean value to 

be close to the true mean value of the variables.  

During the period, which is analysed in this thesis, we see generally high levels of efficiency. 

From 2011-2015 the Danish dairy farms experienced an increase in the technical efficiency as 

displayed in Table 8.7. This development might be explained by the fact that the farmers have 

experienced economic pressure and increased competition due to the abolishment of the quota. 

They have therefore worked to increase their technical efficiency to create performance growth 

(Philipp 2016).  

Table 8.7: Technical Efficiency over time TL IDF 

TE % 2011 2012 2013 2014 2015 

  N = 1621 %  N = 1615 % N = 1750 % N = 1707 % N = 1505 % 
0 - 80  7 0.43 6 0.37 2 0.11 3 0.18 2 0.13 
80 - 85 31 0.91 19 1.18 17 0.97 12 0.70 8 0.53 
85 - 90 99 6.11 97 6.01 83 0.74 78 4.57 67 4.45 
90 - 95 609 37.57 628 38.89 669 38.23 672 39.37 569 37.81 
95 - 100 875 53.98 865 53.56 979 55.94 942 55.18 859 57.08 
Source: Own calculations based on model result from R.  

The increased technical efficiency could also be due to a general development in the technology 

used on the farms, since the Danish dairy farms have gotten bigger and more specialised during 

the period. The increase in technical efficiency can also be a result of the farmers using the 

potential of productivity growth that exists under increasing returns to scale. From Table B.6 and 

Table B.7 in Appendix B we can see that the shares of the inputs used and the outputs produced 

have not changed, but the value of both the outputs and the inputs have increased. Since prices 

are all in 2010 values the development is due to an increase in the quantities used and produced, 



72 

and hence an overall increase in the farm size.  

The output distance estimation  

Since the data used in this thesis is mainly from a period with a milk quota restriction, we have 

assumed that the farmers have been input minimizing. However, given that the quota did not 

regulate the market for the most part of 2015, it is worth investigating, if the output distance 

function is a better fit to the data. As already mentioned, the Danish milk producers have 

exceeded the quota from time to time, even with the restriction.  

First, we estimate the Cobb-Douglas output distance frontier using the same approach as for the 

Cobb-Douglas input distance frontier. The estimation is done based on equation (4), using the 

inefficiency equation specified in (2), using the mean scaled quantities approach and gross milk 

as the explained variable. The obtained results prove to have left skewed residuals and being 

very close to the OLS estimation, which is an indicator of no inefficiency being present. 

However, as explained for the Cobb-Douglas input distance frontier, this result could also be due 

to a miss-specified model, which is why an translog output distance function (TL ODF) is 

estimated.   

Like with the input distance estimation, several model specifications were estimated and tested 

against each other prior to selecting the final model to proceed with. The first estimation, the 

general model, is based on equation (5) adding equation (2) containing the inefficiency variables. 

Once again simpler model specifications were estimated in order to see if they could be 

favoured. Using a log-likelihood ratio test, the null hypothesis of no differences between the 

unrestricted model and a restricted model, including only the milk quality indicators, consultant 

and manager age as inefficiency variables, could not be rejected at a 10 percent level (p-value = 

0.09286). Hence, we can proceed with the above-mentioned restricted model.   

The chosen translog output distance model, including only milk quality indicators, manager age, 

and the dummy for consultant as inefficiency variables, has an estimated gamma equal to 0.69. 

This indicates that inefficiency is important in the model. Testing the frontier against an OLS, it 

can be rejected that there is no inefficiency in the model.  

The mean efficiency is 94 percent, which indicates that the estimation does not lie on the frontier 

and inefficiency is present. The model fulfils the monotonicity assumption in inputs for 76 

percent of the observations and for 99 percent of the observations in outputs. However, we find 

that the monotonicity assumption is satisfied at the mean for the calculated elasticities. From 
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Table 8.8, the number of violations of the monotonicity assumption for each output and input 

elasticity are listed. We find that the input variable “Veterinary and medicine” violates the 

monotonicity assumption most frequently. Which might be due to the fact that the use of 

medicine might not result in extra output. For the same reasons as described for the TL input 

distance frontier, we do not impose monotonicity.       

The model violates the assumption of being quasi-convex in 𝑥 and convex in 𝑦 for all 

observations; however, as described earlier, this assumption is often violated when estimating a 

stochastic frontier (Sauer. J, Frohberg. K, Hockmann 2006).  

As the mean elasticity of scale is larger than one, there is a small indication of increasing returns 

to scale, as was also found using the translog input distance function. 

Table 8.8: Distance elasticities TL ODF 

  Mean St. Dev. 
Violations of  
monotonicity 

Milk output 0.85 0.05 0 
Other output 0.18 0.05 9 
Feed -0.37 0.07 1 
Veterinary and medicine -0.01 0.02 1842 
Labour -0.09 0.03 84 
Land -0.18 0.04 1 
Capital -0.19 0.06 104 
Materials -0.17 0.04 4 
Mean Elasticity of scale   1.01 0.06 

 Source: Own calculations based on model result from R.  

The mean elasticities for the translog output distance were also calculated based on the estimated 

coefficients and as in the input distance function, the feed expenditure is found to have the 

largest effect on the technical efficiency. Given that the dataset only contains specialised dairy 

farmers, it is not surprising that the biggest output elasticity is related to milk output. If milk 

output were to increase 1 percent then, ceteris paribus, the technical efficiency would increase 

0.85 percent.  

The effects of the production variables included in the technology set are estimated to obtain the 

most precise estimates as possible in relation to the technology set. The effects of the different 

production variables are presented in Table 8.9. The summary statistics of the TL output distance 

function can be found in Table B.5 in Appendix B, from which we can see that the standard 



74 

errors for the coefficients are small, and therefore the estimates should be rather precise. The p-

values in Table 8.9 show that the effects of the production variables are all significant, at least at 

a 5 percent level, except from the dummy for organic production.   

  Table 8.9: Marginal Effects of production variables TL ODF 
 Effect in percent p-value 
Regnskabsaar 2012 -0.84 0.014 
Regnskabsaar 2013 5.75 0.000 
Regnskabsaar 2014 4.61 0.000 
Regnskabsaar 2015 -4.49 0.000 
Milkingsystem 2 (fishbone) -2.41 0.000 
Milkingsystem 3 (other) -1.20 0.000 
Jersey -3.67 0.000 
Organic -0.21 0.461 
Source: Own calculations based on model result from R.  

From Table 8.9 we can see that the effects of both milking system 2 and 3 are negative and 

significant, meaning that those who use milking system 2 or 3 lie on a frontier above those who 

use milking system 1, and thus both systems can produce a larger amount of output using a fixed 

amount of inputs, compared to milking system 1. The production variable with the largest effect 

on productivity is “jersey”, which indicates that “large breed” is less productive than “jersey”. 

This could be due to differences in the protein and fat content in the milk produced by the two 

breeds. Like with the input distance function the years 2012 and 2015 seem to have been better 

for the productivity.  

The calculated marginal effects of the inefficiency variables are presented in Table 8.10. The 

three milk quality indicators are all significant. All three milk quality dummies have a positive 

effect on efficiency compared to the omitted dummies, which indicate that having a high milk 

quality makes the farm more efficient. The age of the manager has a rather small negative but 

significant effect on efficiency, indicating that being older does not help the level of efficiency 

on the farm. The variable “Consultant” has no significant effect.    

Table 8.10: Marginal effect of inefficiency variables TL ODF 
Inefficiency variable Mean effect in percent Min Max p-value 
Cell 1 0.0184 0.0015 0.0460 0.0000 
Viable 1 0.0108 0.0009 0.0271 0.0000 
Spore 1 0.0125 0.0010 0.0312 0.0000 
Manager age -0.0003 -0.0008 0.0000 0.0000 
Consultant 0.0003 0.0000 0.0007 0.7305 
Source: Own calculations based on model result from R.  
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When looking at the technical efficiency over time in Table 8.11, we find the same development 

as for the TL input distance estimation, where technical efficiency has increased over time.  

Table 8.11: Technical Efficiency over time TL ODF 

TE % 2011 2012 2013 2014 2015 
  N = 1621 %  N = 1615 % N = 1750 % N = 1707 % N = 1505 % 
0 - 80  23 1,42 15 0,93 6 0,34 7 0,41 6 0,40 
80 - 85 33 2,04 37 2,29 31 1,77 23 1,35 16 1,06 
85 - 90 110 6,79 103 6,38 102 5,83 86 5,04 75 4,98 
90 - 95 558 34,42 556 34,43 612 34,97 618 36,20 536 35,61 
95 - 100 897 55,34 904 55,98 999 57,09 973 57,00 872 57,94 
Source: Own calculations based on model result from R.  

Previous literature has found that the orientation of the model can influence how efficient 

different firm sizes appear, and thus estimating just the input oriented model can lead to a wrong 

view on how efficient the farms in the sample might be (Sipiläinen 2007). We find that both the 

smallest and the largest farms, when looking at the number of cows, all have an efficiency level 

close to the estimated average efficiency in both models, and hence deviations from the average 

efficiency cannot be explained by farm size.  

From the results presented, there seems to be only small differences in the results obtained from 

the input and output distance functions, even though different model specifications were used. 

This can be due to the fact that the Danish dairy producers already are highly efficient. For both 

estimations, the technical efficiency has increased from 2011-2015. As shown in section 8.4.1, 

Table B.6, and B.7 the dairy farms in this dataset are very specialised and have increased 

production during the years from 2011 to 2015, indicating that the Danish dairy farms have 

gotten bigger and more specialised. From Figure B.2 in Appendix B the efficiency scores 

obtained from the input and output distance models are plotted. Although the farms in the dataset 

appear efficient in both models, it can from Figure B.2 be seen that a larger share of the 

observations is more efficient in the input distance model than in the output distance model. The 

output distance function violates the quasi-concave condition for all observations, whereas the 

input distance function has some quasi-concave observations. Due to this and the results 

presented in Figure B.1 the input distance function seems to be a better match to the data. The 

violation in the output distance model is, however, not surprising, given that the milk quota 

restriction has regulated the market, making it difficult to maximize output in the time period 

analysed.  
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8.4 Summary of Results 

From the correlation analysis, it is found that there is a weak linear relationship between the 

health and milk quality indicators, and the gross margin per cow, while the regression analysis 

shows that having better milk quality indicators is positive for the gross margin per cow. The 

analyses show that the AMS and the jersey breed increase the GM per cow.  

 

We see that the estimated TL input and output distance functions are good fits to the data, given 

that there are rather few implausible estimates for the elasticity of scale and that the 

monotonicity assumption, for the most part, is fulfilled. We find that the two estimated models, 

input and output, are much alike in distance elasticities and technical efficiency.  

 

We find that the occurrence of certain types of diseases can explain variations in efficiency in the 

input distance function and that having good milk quality values have a small positive but 

significant effect on the technical efficiency.  Unlike the animal health and milk quality 

indicators it is found that the production characteristics have a rather large effect on productivity.  

Overall, the input distance frontier seems to be the better fit to the data, which is why the 

estimation results from this will be used in the further discussion.  
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9. Discussion  

9.1 Choice of data and variables  

We have decided only to focus on full-time dairy farms and also exclude those farms that were 

not in the dataset for three years, which means that our final data sample ends up consisting of 

specialised milk producers. It could affect our results, as this decision might have excluded the 

less specialised and hence the less technically efficient farmers from the data set. This 

assumption was necessary to create consistent data and to make sure that we could investigate a 

development over time. However, only allowing farms in the analysis, which have reported to 

SEGES for three or more years, could have excluded farms, which have gone bankrupt and not 

because they stopped reporting the data to SEGES. This indicates that we may have excluded the 

less efficient farms in favour of the more efficient. From 2011-2015 the development in the 

Danish dairy sector has tended towards fewer but larger and more specialised farms. The data 

used in this thesis proves to be representative of this, as we find that the farms in the dataset have 

increased production while at the same time increased technical efficiency. The analysis is 

therefore mainly based on larger specialised dairy farms.  

 

The disease variables were included in the chosen input distance function. Not surprisingly, we 

find that experiencing more cases of mastitis and reproductive disorders decreases the technical 

efficiency on the farm. This is what we expected, as occurrences of diseases reduce the milk 

quality and quantity. However, we find that not all the defined disease variables are significant. 

This is surprising, but might have been the result of rather few occurrences of disorders or 

inconsistent data. As already mentioned, a rather large share of the disease variables has a value 

of zero. Since we cannot know if the farmers have reported all the cases with diseases, our data 

might not be representative of the true number of diseases actually experienced or treated.  

Lawson, Bruun, et al. (2004) find that reproductive disorders are without significance in relation 

to technical efficiency due to good management. This could also be an explanation of our 

findings of no significant correlation between all four types of diseases and technical efficiency. 

As mentioned, there are rather few reported cases of diseases per cow in our data set, which 

might reflect that more attention has been paid to securing fewer cases of various diseases during 

the period covered. Another reason why we only discover a small impact of diseases on 

efficiency could be the focus on breeding higher yielding cows. If the extra yield, the cow 
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delivers, can cover the costs of the diseases it suffers from, there will be no effect of a disease on 

efficiency.   

 

Changing the orientation of the model from being input oriented to being output oriented 

influenced the significance of certain variables. In the estimated output distance function the 

disease variables were not included, as they showed no significant explanatory power. We find 

that the input distance function is a better match to the data, as expected, since the dairy farmers 

have been restricted on output from 2011 to 2014. The output distance function is not the most 

suitable orientation for the data, which can explain the lack of effect of the disease variables. It is 

not an indication of output oriented dairy farms not being affected by more occurrences of 

different diseases, but rather that the orientation is not suitable to capture the effects of certain 

variables.  

 

The marginal effects of the estimated milk quality variables show that the farmers with low milk 

quality indicators are more efficient. This indicates that it pays to have a high milk quality. 

Andersen et al. (2016) believe that the Danish dairy farmers will obtain better economic results if 

they have low milk quality indicators, as this will ensure them a higher price for their milk. We 

find that this is in line with our results, which show that having low cell, viable, and spore counts 

increase the technical efficiency, and thus the gains from obtaining low levels of the milk quality 

indicators are worth the costs of achieving them.   

 

As mentioned, most of the farmers in our data set have good milk quality values and hence they 

receive a supplement of 1-2 percent in addition to the ordinary price on milk. From Landbrug og 

Fødevarer (2016) we see that more and more farmers have decreased their cell count from 2011 

to 2015. In 2015, approximately 87 percent of the Danish farmers had a cell count below 

300,000 meaning that it has become more common to receive a supplement than a deduction. We 

see the same development for the spore count, whereas there has been a small decrease in the 

share of farms with low viable count. This could be due to more focus on the matter through 

better management.  

 

From our analysis, we see that the Danish dairy farmers have become more efficient from 2011 

to 2015, which to some extent can be explained by the fact that more and more farmers have 

obtained lower values for the milk quality indicators.  The farmers have managed to reduce the 

values of the milk quality indicators, e.g. through better management while at the same time 
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increase efficiency. If the manager has succeeded in obtaining low milk quality values by 

changing routines and hygiene levels, the effort used to keep them low might not require a lot of 

extra resources allowing for efficiency to increase. The results seem to support the theory of 

optimal input use in relation to animal health.  

 

As the Danish dairy farms have become bigger and more specialised the costs of diseases 

spreading and causing infections are more severe. As the milk quality is affected by the health of 

the cow, aiming for low milk quality indicators might be worth the extra costs, given that a good 

milk quality does increase efficiency. The results obtained suggest that there is an indirect effect 

of management, as knowledgeable management and decisions will affect the health of the 

animals and the milk quality indicators through daily routines. However, as it was found that the 

manager age had no effect on the technical efficiency on the farms, in the input distance 

function, and not a noticeable effect in the output distance function, it is difficult to say anything 

specific about the effects of a skilled and knowledgeable manager from our estimated models.  

 

We find that farms using the AMS use more inputs in the production than those who use either 

the fishbone or other types of systems. AMS requires fewer hours of manual labour, but is at the 

same time more capital intensive, as it involves large investments to acquire and implement the 

system. On a daily basis, there are costs related to adjusting and maintaining the system. This 

could be why we find that the fishbone and other types of milking systems require less input to 

produce the same level of output. There are also several managerial challenges related to having 

an AMS, as bad hygiene can spread more easily amongst the cows in the herd since there is less 

supervision (Andersen et al. 2016). Because the AMS is a rather new system compared to the 

other milking systems included in the analysis, the lower productivity observed could be due to 

difficulties with adapting to the system. Another reason, why the AMS is unfavourable compared 

to other systems, is that the milk quality obtained from farms using the AMS is on average worse 

(Andersen et al. 2016). With the AMS the cows can be milked more times a day, than with other 

systems, however the extra yield do not seem to make up for the lower milk quality and thus 

lower price received for the milk.   

 

As mentioned, the milk quality is affected by the general health of the cow, and it could therefore 

be interesting to investigate how the use of different milking systems affect the number of 

diseases and milk quality levels. However, this requires a more updated cattle database including 

more detailed and consistent information about the farmers. 



80 

 

Lawson, Agger, et al. (2004) find that farms with jersey cows are on average less technically 

efficient than farms with large breed. This is not in line with what we find in our results, where 

farms with jersey cows prove to be more productive than farms with large breed. The jersey 

breed is smaller in size than large breed, and the milk obtained from jersey cows has higher 

levels of protein and fat. Being smaller in size, jersey cows require less feed and combined with 

the higher protein and fat levels, they are more productive in our model. Adding to this, the 

higher protein and fat levels secure the farms with jersey cows a higher price per kg ECM, than 

received at the farms with large breed (Andersen et al. 2016). Unlike us, Andersen et al. (2016) 

find that large breed tend to make up for the lower energy in their milk by producing more, and 

thus farms with large breed do not seem to perform worse. The price difference is not directly 

accounted for in our model, as it is assumed that all farmers receive the same price, which might 

explain the large difference in productivity found between the breeds in the model. The result 

from the efficiency analysis is in line with the results found in the correlation and linear 

regression analysis. It could indicate that the farms with the jersey breed are good at milk 

production.  

 

Organic dairy producers receive a higher price on milk due to an organic price supplement, 

which has not been considered in this thesis. This might be one of the explanations as to why we 

see no significant effect of being organic. Given that the price development for organic farmers 

has been close to that of the conventional farmers, as can be seen from Figure 1.3, and that the 

price supplement only caused large variations in the results between organic and conventional 

farmers in 2015, the assumption to use the same price index seems reasonable (Andersen et al. 

2016). The price index used in this thesis is an aggregated price development based on both 

conventional and organic milk (Statistik 2016f). 

 

The penalty (super tax) from exceeding the milk quota was not included in the analysis. If the 

farmers exceeded the national aggregated quota, the fee would be paid among those having 

exceeded their quota. The Danish farmers did exceed the quota in the period from 2011 to 2015, 

and therefore this cost could have been relevant to include in the analysis. The focus of this 

thesis has been on the effects of reported diseases, milk quality indicators, and production 

characteristics and not on the economic aspects of the milk quota restrictions. Given that we in 

this thesis are measuring how well the farmers can transform input quantities to output quantities 

and that we are assuming identical prices, including the fee was not considered relevant. 
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Furthermore, the risk of paying the fee is not new to the farmers, and we would therefore assume 

that they had taken it into consideration when planning their production. Given that the size of 

the fee might be dependent on farm size, including it in the estimation could be done using a 

dummy. This would find the effect of having to pay the fee independently of farm size. 

 

As mentioned earlier, we see that for both models we have increasing returns to scale, indicating 

that there are gains from increasing the farm size. However, when looking at the relationship 

between technical efficiency and total output from the farms, it is clear that the level of technical 

efficiency is not dependent on the amount of output produced or the number of cows, and 

thereby not dependent on the size of the farm. This result might be due to the restrictions 

imposed on the dataset and the milk quota restriction.  

 

The estimated models do not include a time trend, which means that a technological change over 

time is not considered. This could have been done, since previous studies have found that there 

exists a rather general trend. Given that we are only looking at a five year period and that caution 

should be taken when imposing a linear time trend, as it does not always sufficiently reflect the 

true development over time, it was not included (Karagiannis et al. 2004). Instead of a time 

trend, year dummies were included to be able to see the effect of the individual years.   

 

In the years 2012 and 2015, the Danish dairy farmers were more productive compared to 2011. 

Given that monetary values have been deflated, price changes cannot explain the results 

obtained. We see that the year 2015, in which the milk quotas were removed, caused an increase 

in the productivity among the Danish dairy producers. This might be explained by the new 

market conditions, where output was no longer controlled by the milk quota system. The tough 

market conditions, which the farmers faced in the time after the milk quota was removed, might 

have affected the production processes as the farmers needed to “run a bit faster” in order to 

survive in the market. In 2012 the farmers were too quite productive. This might have been due 

to a higher milk yield (Andersen & Hansen 2012). Contrary to the years 2012 and 2015, the 

years 2013 and 2014 appear to have been less productive compared to 2011, in the estimated 

results. However, these two years actually produced good results for the Danish dairy farms, 

because of an increased price on milk. The difference in productivity obtained from the results 

might indicate a tendency of farmers focusing a little less on keeping productivity up in years 

with higher prices (Vidø et al. 2014). Our estimations have attempted to say something about 

dairy farmers’ performance, without focusing on prices. The results indicate that more factors 
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than the price of milk are important for the performance of the dairy farm, as the year dummies 

prove to affect productivity in a different way than expected.      

However, since most published reports regarding market conditions and performance for the 

dairy sector look at price changes, the estimated effects seem difficult to explain.  

9.2 Choice of Method and Orientation 

We have chosen to use the stochastic distance function approach, as this method is often used on 

data from the agricultural sector. It makes sense to be able to include more inputs and outputs in 

the estimation, when dealing with an agricultural production. Furthermore, the distance function 

approach does not have to include prices, which would have been difficult in this case. Given 

that prices were not available in the data set, using a cost function was not a possibility.    

 

We assume that the farmers in the data set have faced identical prices. This assumption is 

unlikely to hold in real life, since one could expect larger farms to obtain price discounts due to 

large scale advantages. We have deflated all values using sector specific price indexes. To create 

a more precise price index, or a more precise idea of how efficient each farm is at transforming 

inputs to outputs, farm level prices or input quantities would have to be available. However, even 

so, creating price indexes using individual prices for all five years would have been too 

comprehensive given the time constraint.  

 

When using a distance function, identical prices are implicitly assumed, and hence efficiency is 

based on a farm’s ability to transform inputs into outputs, and not on the manager’s ability to buy 

inputs at a low cost and sell outputs at a high cost. Excluding price differences means that we 

assume high efficiency to be associated with good economic performance. Keeping up a high 

efficiency score over time indicates that even during fluctuations in the economy, the farm still 

succeeds in performing well. The choice to use the distance function approach therefore has the 

implication of estimating technical efficiency and not economic efficiency or economic 

performance. The two concepts differ from each other as technical efficiency explains the ability 

to transform input into output, whereas economic efficiency concerns the capability to keep 

production costs as low as possible, while maximizing output production and selling output at 

the highest price possible. Therefore, the economic efficiency also depends a great deal on the 

prices related to the different factors of production. Because of this we have not been able to 

measure economic efficiency in this thesis, even though it might have provided a clearer picture 

of how the Danish milk producers are performing. Technical efficiency can be considered a 
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prerequisite for economic efficiency, as the farmer needs to achieve technical efficiency to be 

able to achieve economic efficiency. One can consider perfect economic efficiency as the state 

where every input cost is minimized while the transformation of inputs into outputs is 

maximized.   

 

The choice of orientation has proven not to affect the obtained elasticities evaluated at the 

sample mean. This could be due to the fact that the time period covered in this thesis is the years 

leading up to the removal of the milk quota restriction, so the farmers have been preparing to 

increase production as of 1 April 2015. However, when looking at the technical efficiency over 

time we do experience differences between the two orientations, confirming that the milk quota 

has called for more input oriented production. Another reason, why we might obtain similar 

results from the two estimations, could be that the farms in the data set are rather homogeneous 

given that they have chosen to specialize in milk production. We did find that efficiency did not 

depend on farm size measured in the total number of cows, and hence for the Danish dairy sector 

large differences in efficiency do not seem to exist among specialised milk producers. Given that 

we have excluded smaller farms from the data set, large variations in scale economics might not 

be reflected in the estimation.  

 

This is not in line with other studies seeking to analyse efficiency among dairy farmers subject to 

the milk quotas imposed by EU. Sipiläinen (2007) finds that smaller farms tend to be more input 

oriented than larger farms and hence appear more efficient when using the input orientation. The 

choice of orientation can, as mentioned, have implications for the estimated efficiencies, which 

is why Orea et al. (2004) address the choice between an input oriented or output oriented model 

in a cost minimizing framework. They find that different orientations yield very different results, 

which emphasize the importance of choosing the correct model (Orea et al. 2004). However, 

given that the specialised Danish dairy producers are highly developed and efficient, the lack of 

effect of the orientation is not surprising.  

 

The results of the two estimated models would have been expected to be the same if the models 

had exhibited constant returns to scale. We find that both models display increasing returns to 

scale, and thus the efficiency scores prove to be different for the models. This makes it difficult 

to conclude which model is better fit. Therefore, it might have been more relevant to consider a 

model mixing the orientations, which would involve the input and output distance functions in 
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the context of a multi-input and multi-output production technology, as the production 

orientation as argued earlier could be shifting over our investigated period.  

 

Orea et al. (2004) look at how one best chooses the orientation of the model specification by 

introducing efficiency as an input-oriented, an output-oriented, and a hyperbolic parameter. The 

hyperbolic parameter is a third way of measuring inefficiency, and unlike the two other methods, 

the hyperbolic method allows farmers to reduce inputs while they at the same time increase 

outputs. Knowing that different types of inefficiency might have affected data, testing several 

model specifications is advised.  

Like Orea et al. (2004), Kumbhakar et al. (2007) look at how one can combine both the input and 

output orientation. They propose a latent class model (LCM) in which they mix the input and 

output distance approach, allowing for both input and output oriented firms to be efficient in the 

same estimation, by placing the firms in one of the two categories. The method differs from the 

one presented in Orea et al. (2004), because firms have to be placed into groups. It could 

therefore be suggested for further analysis on the subject to investigate using the approach of 

mixing the input and output orientations, as it can be assumed that both orientations have been 

used by the farmers over the period. This method might avoid the insecurity of deciding which 

model fits the data the best way (Kumbhakar et al. 2007). Both articles find that the input 

oriented model is a better fit. Since the milk quota regulation is no longer affecting the dairy 

sector, future research should be more aware of the orientation of the model and hence focus on 

new ways of analysing efficiency in European countries. The choice to estimate the input and 

output models separately was made due to limited time, and the fact that data used in this thesis 

is (mainly) from a time period where output was fixed given that the milk producers were subject 

to the milk quota restriction.  

9.3 Violations of theoretical assumptions 

Overall, we find that a sizeable share of observations violated the assumption of monotonicity 

and quasi-concavity. This problem could stem from the fact that we are looking at farmers, who 

can have other motives than to profit maximize, which is what the economic model assumes, and 

hence this condition could have been violated in the first place. In general, the literature 

regarding technical efficiency tends to accept the models violating the monotonicity assumption 

if the condition is satisfied at the mean. Imposing monotonicity is recommended by Henningsen 

& Henning (2009) using their rather simple three step procedure. However, given that the simple 

procedure does not apply to a multiple output framework and that time was limited, we have 
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refrained from imposing it. Nevertheless, if future studies were to analyse efficiency among 

Danish dairy farmers, imposing monotonicity might improve the results.  

 

Another problem when working with data is multicollinearity. When deciding on the variables to 

use, there is trade-off between showing more detailed information about input types thereby 

adding the risk of multicollinearity on one hand and aggregating the inputs and thus sacrificing 

the detailed information on the other hand (Brümmer et al. 2002). Having used six inputs and 

two outputs in the estimated models, problems of multicollinearity could exist. However, we 

have refrained from looking into any complications related to multicollinearity, since the 

literature does not seem to propose any solutions other than aggregating inputs.   

 

Given that we are analysing technical efficiency over time, we should be aware of the potential 

endogeneity problems as well. Distance functions using normalized inputs and outputs could be 

subject to non-exogenous regressors. The mean-scaled model is less susceptible of endogeneity 

bias than the normal model, due to the fact that input and output variables often consist of 

several factors. Hence, Brümmer et al. (2002) argue that the problem is not likely to be more 

severe than in any production function type of study.  

 

Overall it seems that the methods to handle the problems of monotonicity and endogeneity in the 

literature are of current debate. Given that most solutions to solve the existing problems are 

rather complicated and that time was limited, this study will not go into further details on how to 

deal with them.   

9.4 Comparison of results with the literature   

We find that the elasticity for milk output is approximately 0.80 percent for both of our models. 

Given that the sample only contains specialised full time dairy farmers whose output from milk 

is at least two thirds of the total output, this is not surprising. Common for the literature 

analysing efficiency among dairy farmers is that the elasticity for milk output is rather large. 

Sipiläinen (2007) also uses a multiple input distance function and finds that for the Finnish dairy 

farmers, the elasticity of milk is 0.54 whereas Newman & Matthews (2007) use an output 

distance function and find that the elasticity of milk is 0.77 for Irish dairy farmers. Overall, we 

see that the elasticity of milk output found in this study does not deviate from that found 

elsewhere.  
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The choice to include feed as a separate input variable was made because it is essential to animal 

production. Not surprisingly, we find that the elasticity for feed expenditure is by far the largest 

among all the input elasticities in our results with a value of 0.33 percent. Several of the studies 

regarding technical efficiency among milk producers have not included feed expenditure as a 

separate input variable; however, Lawson, Agger, et al. (2004) look at the effect of both 

concentrate feed and roughage feed for Danish dairy producers. They find that for concentrate 

the elasticity is 0.17 and for roughage 0.14. When combining the two we see that it is close to the 

result obtained from our estimations. As the type of feed can influence the milk yield, it would 

have been interesting to analyse the effects of different types of feed. However, different types of 

feed might violate the assumption of essentiality given that feed only in general is essential, but 

different, or more specialized types might not be. The relatively large elasticity of feed implies 

that the farmers have a larger potential of optimizing the production if adjusting the feed 

expenditure, than adjusting the other input variables. Furthermore, the use of feed can be 

considered a variable cost, and thus it is easier to adjust the quantity and kind of feed in the short 

run than other inputs like land or capital.      

 

When looking at technical efficiency, the results presented in the literature are varying. 

Sipiläinen (2007) finds that the Finnish dairy farmers have experienced a decrease in the 

technical efficiency over time from 1989 to 2000. However, the development in the Finnish 

dairy sector is mainly because Finland joined the EU in 1995, and thus the dairy farmers became 

subject to the milk quota system. Lawson, Agger, et al. (2004) find that around 90 percent of the 

dairy farms analysed have a technical efficiency of 90 percent or more. Common for the studies 

mentioned here is that when the farmers are not 100 percent technical efficient there is increasing 

returns to scale at the mean as we also see from our estimations. This indicates that there is room 

for improvement and expansion. However, like Lawson, Agger, et al. (2004) we find that 

efficiency levels in general are very high and thus further improvement can mainly be obtained 

through technological change.  

 

We find that our results in relation to production variables and elasticities are close to those 

presented in the literature regarding technical efficiency on dairy farms. We see that feed has a 

rather large impact on how efficiency can be improved compared to other inputs, which suggests 

for future studies to consider how different types of feed affect the milk yield, the milk quality, 

and the efficiency. Overall the results indicate that the farmers should consider new technologies 

like the AMS with caution, as the system requires more input and a skilled manager. 
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Furthermore, the milk producers should pay attention to the health of the animals, since they 

operate in a market close to perfect competition where even small improvements generate a gain.  

9.5 Implications of results  

The results obtained in this thesis have some interesting implications worth discussing. It appears 

that there are rather large productivity losses associated with the AMS compared to the other 

types of systems. This suggests that specialised milk producers, who consider shifting to the 

AMS, need to prepare carefully before investing in the system. Besides from requiring different 

management skills, the aspect of financing the new system can impact the choice to invest in the 

AMS. If the banks were to increase the interest rate for lending money, the economic gains, 

which one would expect, from replacing the old system with a new, might be reduced 

substantially. Non-scientific reports claim that the quality of the milk obtained from farms using 

the AMS is on average worse, and the farmers investing in the AMS should therefore be aware 

of the new challenges they can face. A productivity gain obtained from the AMS seems to be 

rather dependent on a skilled manager.    

 

The higher price, which a good milk quality yields, has a very significant but small effect on the 

technical efficiency obtained by the farm. This is not surprising, since one should always try to 

maximize the value of the output, and our findings just support the documented tendency among 

the Danish dairy producers. However, if the price on milk changes, the incentive and the gain 

from achieving the supplement might change too. This would hardly affect efficiency, as the 

estimated effects are rather small. Nonetheless, the very significant effect of having good milk 

quality suggests that the Danish dairy farmers should keep aiming for low milk quality levels in 

the future.  

 

The results also show that the type of breed can affect the productivity by more than 3 percent. 

Given that only around 11 percent of the farms in the data set use the jersey breed in their 

production, it seems that the sector as a whole could experience a rather large productivity gain, 

if more farmers where to replace the larger breeds with jersey cows. However the results 

obtained might not reflect the true effects of having jersey cows, and thus the true productivity 

gain might be smaller.  

 

The very small effects of the diseases are also worth mentioning here. Based on the results 

obtained in this thesis, there seems to be no great effect of diseases on the technical efficiency 
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among the Danish dairy farmers. This is rather surprising, but suggests that either the managers 

have had more focus on the matter or that the negative effect is overshadowed by the extra 

productivity. The findings can imply that the Danish dairy farmers are rather good at taking care 

of their herds and that securing the animals’ health is considered to be of great importance, thus 

they do not need to improve much within this area. However, the results should be interpreted 

with caution since the small effect could be due to a lack of reported disorders and hence there 

might still be room for improvement in the handling of sick cows on the Danish dairy farms.  
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10. Conclusion 

The objective of this study was to examine to what extent milk quality indicators and certain 

animal health indicators influence the technical efficiency of Danish dairy producers. The 

analysis was based on farm level data provided by SEGES from 2011 to 2015 and done using a 

stochastic distance frontier approach. After testing the data using a correlation analysis and an 

OLS estimation, different input and output distance functions were estimated as stochastic 

frontier models. The following investigations clarified that the input distance frontier seemed to 

be a better fit to the time period covered in the data.      

 

We found that certain variables related to diseases in the dairy production did have a significant 

effect on technical efficiency. Having a high number of reported cases of mastitis and 

reproductive disorders in the herd lowers the technical efficiency on the farm. The effects of the 

milk quality indicators proved to be significant but small in relation to technical efficiency, and 

thus the farmers with a high milk quality has a higher technical efficiency. 

 

Different production characteristics related to the technology set within dairy production were 

also examined. We found that the farms using the AMS are less productive, given that the AMS 

is known to create more managerial challenges than other more traditional milking systems. 

Furthermore, the results showed that there is a significant productivity loss from having large 

breed compared to jersey cows. This implies that the lower feed use and the higher energy 

content in the milk obtained from jersey cows can make up for the smaller yield.  

 

Overall, the technical efficiency for the Danish dairy farmers has increased in the period from 

2011 to 2015. This increase is compliant with the fact that specialized Danish dairy farms have 

been under economic pressure to increase efficiency by “running a bit faster” in the daily 

production routines. The results showed that there is still room for improvements in the future in 

relation to technical efficiency. Improvements can be done by changing the technology, securing 

fewer occurrences of disorders, a good milk quality, and by adjusting the use of feed. However, 

given that the Danish dairy farms are very efficient, and thereby not affected severely by 

challenges with efficiency, an increase in efficiency will require a change in the technology used, 

rather than more focus on the health of the animals and the milk quality.  
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11. Further Perspectives  

Even though we consider the estimated results to be reasonable, the analysis could be developed 

further to obtain more knowledge on the topic of how milk quality indicators and different types 

of diseases influence a dairy farm’s technical efficiency.  

 

Additional analysis could include interaction terms between the production technology variables 

and the inefficiency variables. This might provide more knowledge on whether, and to what 

extent, different types of milking systems influence the milk quality or if the type of breed is 

more likely to suffer from various diseases. Further investigations could also examine in more 

depth whether the relatively low numbers of reported diseases are due to actual low levels of 

diseases in the Danish dairy herds, or if the numbers are more likely to reflect difficulties with 

correct reporting. Furthermore, it would be interesting to consider if the data, concerning milk 

quality indicators and reported diseases, is actually reported each month or if the year averages 

are more likely to only reflect a few months during the year. Another aspect could be to look into 

whether the milk quality and health indicators differ through different seasons.  

 

As discussed earlier, it would also have made sense to estimate a model including prices if these 

had been present in the data. This would probably have helped to clarify whether the Danish 

dairy farmers are using their relatively high technical efficiency to ensure economic efficiency as 

well.  

When prices are not available, further analysis would benefit from estimating a model taking into 

consideration the change in orientation that might have happened after the abolishment of the 

quota. A model allowing for both orientations to be present and for them to change over time 

might create a clearer picture of the farmers’ optimizing behaviour related to the technical 

efficiency in the period.   

 

Another aspect, which could benefit future analysis, is considering the possibility of imposing 

monotonicity and if potential problems with multicollinearity and endogeneity could be avoided 

in the estimated stochastic distance frontiers.   
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13. Appendices 

13.1 Appendix A – Descriptions of the dataset 

 

Table A.1: Production characteristics for organic and conventional farmers 

  Organic Conventional 
Observations 1435 6763 
Share of observations 0.18 0.82 
Share of production characteristics     
Jersey 0.11 0.11 
Large breed 0.89 0.89 
AMS 0.24 0.25 
Fishbone 0.51 0.49 
Other systems 0.25 0.26 
Source: Own calculations 

 

Table A.2: Share of observations for the milk quality dummies 
	  	   Shares in the two groups  

  1: Price supplement 2: Deduction or no supplement 

Cell 0.91 0.09 
Viable 0.95 0.05 
Spore 0.85 0.15 
Source: Own calculations 

 

Table A.3: Reported cases of the different disorders per cow 
  Mean Min Max Share with zero reported 

cases 
Mastitis 0.11 0.00 0.87 2% 
Hoof 
disorders 0.14 0.00 8.42 9% 

Reproductive 
disorders 0.18 0.00 1.36 2% 

Other 
disorders 0.03 0.00 1.80 23% 

Source: Own calculations 
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Table A.4: The price index for the outputs 
    Price index (2010=100) 

Output type Output 
share 2010 2011 2012 2013 2014 2015 

Milk output             
Total index 
for milk 
output 

100% 100 107 105 118 121 97 

Other output             
Cereal  25.69% 100 143 157 148 119 118 
Seed 0.28% 100 108 115 115 115 114 
Beets 0.21% 100 90 100 107 118 100 
Potatoes 0.64% 100 104 99 121 150 154 
Rape 0.99% 100 136 149 130 109 113 
Peas 0.09% 100 111 156 118 105 103 
Other crops 0.08% 100 115 126 131 116 108 
Horticultural 
crops 0.05% 100 103 103 102 101 101 
Energy 
crops 0.25% 100 154 164 172 180 189 
Cattle 54.17% 100 118 134 135 123 127 
Pigs 0.86% 100 109 122 123 113 101 
Poultry 0.10% 100 118 124 132 120 114 
Fur animals 0.14% 100 81 88 88 100 100 
Sheep 0.05% 100 110 110 124 123 129 
Other 
livestock 0.07% 100 118 134 135 123 127 
Machine 
station 6.50% 100 101 105 107 108 110 
Other 
agricultural 
income 9.35% 100 115 126 131 116 108 
Total index 
for other 
output 

100% 100 121.99 133.62 136.53 120.72 120.21 

Source: (Statistik 2016f) and own calculations.  
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Table A.5: The price index for the inputs 
    Price index (2010=100) 
Input 
variable Share 2010 2011 2012 2013 2014 2015 

Feed             
Cereal 14% 100 145 155 150 122 115 
Readymix 73% 100 120 128 136 121 117 
Other 
bought 
kinds 14% 100 125 140 153 152 155 
Total index 
for feed 
expenditures 

100% 100 125.4 134.74 134.74 126.69 123.21 

Veterinary and medicine             

Total index 
for 
veterinary 
and 
medicine 

100% 100 101 102 98 105 109 

Wages             
Total index 
for wages 100% 100 0.99 0.97 0.98 0.98 0.99 

Materials             
Sowing 9% 100 108 115 115 115 114 
Fertilizer 8% 100 124 129 115 115 115 
Crop 
protection 4% 100 92 94 126 191 194 
Various, 
field 4% 100 107 111 119 137 150 
Various, 
animal 
production 22% 100 101 103 106 108 100 
Harvest of 
cereal and 
fodder 13% 100 102 105 105 103 102 
Various 
machine 13% 100 101 105 107 108 110 
Other costs  26% 100 111 117 121 119 118 
Total index 
for materials  100% 100 106.1 110.3 112.9 116.3 115 

Source: (Statistik 2016f), (Statistik 2017b),(Statistik 2017a), and own calculations.  
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Figure A.1: Boxplots of the different levels of the reported diseases per cow 

 
Source: Own plots from R 
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13.2 Appendix B – Empirical Analysis and Estimation Results 

 

Table B.6: Results of correlations analysis 
  t-value p-value Correlation 

coefficient 

The influence inefficiency indicators and 
production characteristics on GM per cow       

Mastitis  7.91 0.000 0.09 
Hoof and limb disorders  7.14 0.000 0.08 
Reproductive disorders  3.11 0.002 0.04 
Other disorders  3.65 0.000 0.04 
Cell 1 20.26 0.000 0.22 
Viable 1 8.13 0.000 0.09 
Spore 1 19.65 0.000 0.22 
Jersey 9.87 0.000 0.11 
Fishbone 2.26 0.024 0.03 
Other systems -6.58 0.000 -0.07 
Organic -1.12 0.263 -0.01 
Manager age -5.55 0.000 -0.06 
Consultant  3.53 0.000 0.04 
Source: Result from R.  

13.2.1 Description of Equation B 

We have used the same dependent variable as in the correlation analysis: the gross margin from 

milk per cow, which will be explained by the milk quality and animal health indicators. We also 

include the type of breed and milking system as these might have an influence on the 

productivity and thus the economic performance of the farms. This resulted in the following 

model specification of Equation B: 

 

𝐺𝑀!" = 𝛼! + 𝛼!!!𝑅𝑒𝑔𝑛𝑠𝑘𝑎𝑏𝑠𝑎𝑎𝑟!
!!! + 𝛼!𝑚𝑎𝑠𝑡𝑖𝑡𝑖𝑠!" + 𝛼!ℎ𝑜𝑜𝑓𝑑𝑖𝑠!" + 𝛼!𝑟𝑒𝑝𝑟𝑜𝑑𝑖𝑠!"           

(B)   

+𝛼!𝑜𝑡ℎ𝑒𝑟𝑑𝑖𝑠!" + 𝛼!𝑐𝑒𝑙𝑙1!" + 𝛼!"𝑣𝑖𝑎𝑏𝑙𝑒1!" + 𝛼!!𝑠𝑝𝑜𝑟𝑒1!" + 𝛼!"𝑗𝑒𝑟𝑠𝑒𝑦!" + 𝛼!"𝑜𝑟𝑔𝑎𝑛𝑖𝑐!" 

+ 𝛼!"!!𝑚𝑖𝑙𝑘𝑖𝑛𝑔𝑠𝑦𝑠𝑡𝑒𝑚!"#
!
!!! + 𝛼!"𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑛𝑡 + 𝛼!"𝑚𝑎𝑛𝑎𝑔𝑒𝑟𝑎𝑔𝑒!" + 𝛼!"𝑚𝑎𝑛𝑎𝑔𝑒𝑟𝑎𝑔𝑒!"!   

+𝜀! + 𝑎!"  

 

Where 𝛼! with 𝑗 = 0,… ,18 are the parameters to be estimated, 𝜀! is a time independent noise 

term and 𝑎!" is a time dependent noise term which can take unobserved effects like management 
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into account, “milkingsystem” represents the three dummy variables for the type of milking 

system used at the farm: “AMS”, “fishbone”, and “othersys” with the values of 1, 2, and 3 

respectively. The dummy “jersey” is tested against the omitted dummy for the type of breed 

“large breed” and the dummies included for the milk quality indicators are tested against those 

who do not get an allowance in the price they receive for the milk they deliver. We also test if 

there is an effect of being organic compared to conventional and if the presence of a production 

consultant affects the GM.  𝐺𝑀!" is the GM per cow, subscript 𝑖 denotes the individual farm, and 

𝑡 denotes the year. 

 

Table B.7: Results of the linear regression, Equation B 

  Estimates sd.err p-value 
(Intercept) 8424.87 664.47 0.000 
Regnskabsaar2012 -55.01 84.50 0.515 
Regnskabsaar2013 -278.99 83.36 0.001 
Regnskabsaar2014 149.57 84.53 0.077 
Regnskabsaar2015 971.91 87.71 0.000 
mastitis 336.05 327.13 0.304 
hoofdis 434.08 98.58 0.000 
reprodis 338.72 221.88 0.127 
otherdis 811.48 326.99 0.013 
cell 1476.96 93.20 0.000 
viable 633.98 116.08 0.000 
spore 1190.03 75.89 0.000 
jersey 1011.38 89.03 0.000 
organic -117.05 68.66 0.088 
milkingsystem2 -248.59 64.22 0.000 
milkingsystem3 -416.20 73.96 0.000 
consultant 175.18 79.09 0.027 
managerage -9.58 26.40 0.717 
I(managerage^2) -0.11 0.27 0.675 
R2 (Adjusted R2) 0.0.14363 (0.0.14328) 
F-statistics 71.962 (18,7723), p-value: 0.000 
Source: Model result from R.  
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For equation (B) we find that several of the estimated variables have a significance level of 

either 5 percent or 1 percent.  

  

The effect of each year is significant. The years from 2012 and 2013 have negative coefficients, 

which indicate that the years have affected the gross margin per cow negatively compared to 

2011, unlike 2014 and 2015 which were better years than 2011, when looking at the GM per 

cow. This can be explained by the fact that the Danish dairy farmers in general have gotten 

bigger and more specialised since 2011.  

 

Looking at the health indicators, all but one is significant. All disorders have a positive effect on 

the GM per cow, which is different than what one might expect, but could be due to the fact that 

there has been more focus on breeding high yielding cows rather than robust cows, and hence the 

extra yield makes up for the additional occurrences of diseases (Beskyttelse n.d.). Among the 

milk quality indicators all three variables are highly significant. All three milk quality dummies 

have a positive effect on GM, which is what one would expect, since receiving a higher price on 

milk should increase the value of the gross output.  

 

We also see that the type of breed matter. The dummy for jersey has a positive and significant 

effect on the GM per cow compared to large breed. Both the dummy for milking system 2 and 3 

have a negative impact on the GM per cow compared to the AMS.  

 

The age and squared age of the manager are not significant in the OLS estimation, which is a 

weak indication of that experience is not affecting the economic performance. From the F-

statistic we see that all parameters together are significant on a 1 percent level. R2 and adjusted 

R2 are both found to be very low, which indicate that the data is fitted very poorly to the OLS 

model.  

 

Overall the OLS estimates should be interpreted with caution. The linear regression model is 

always a good starting point for estimating a model, because it can be a supplement to the 

correlation analysis and provide an overview in which direction we might expect the variables to 

affect the explained variable, but in the case of panel data, it will most often provide biased and 

inconsistent estimates due to endogeneity.  
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Table B.3: Distance elasticities of TL IDF with zero violations of monotonicity 

	  	  
        Mean        St. Dev. Violations of 

monotonicity  
Milk output -0.79 0.06 0.00 
Other output -0.17 0.05 0.00 
Feed 0.33 0.06 0.00 
Veterinary and medicine 0.03 0.01 0.00 
Labour 0.09 0.03 0.00 
Land 0.19 0.04 0.00 
Capital 0.18 0.05 0.00 
Materials 0.18 0.03 0.00 
Mean Elasticity of Scale  1.06 0.11 	  	  
Source: Model result from R.  

 

Table B.4: Estimated parameters of the TL IDF (TLidfres3) 

Estimated Translog IDF with health and milk quality indicators 

  Estimate 
Std. 

Error p-value 
(Intercept) 0.04 0.01 0.000 
log(grossmilkMS) -0.77 0.00 0.000 
log(grossotherMS) -0.16 0.00 0.000 
I(0.5 * log(grossmilkMS)^2) -0.11 0.01 0.000 
I(0.5 * log(grossotherMS)^2) -0.07 0.00 0.000 
I(log(grossmilkMS) * log(grossotherMS)) 0.09 0.00 0.000 
log(feedexpMS/materialsMS) 0.34 0.01 0.000 
log(vetmedMS/materialsMS) 0.03 0.00 0.000 
log(totalwagesMS/materialsMS) 0.09 0.00 0.000 
log(landMS/materialsMS) 0.18 0.00 0.000 
log(capitalMS/materialsMS) 0.17 0.00 0.000 
I(0.5 * log(feedexpMS/materialsMS)^2) 0.24 0.02 0.000 
I(0.5 * log(vetmedMS/materialsMS)^2) 0.03 0.01 0.000 
I(0.5 * log(totalwagesMS/materialsMS)^2) 0.09 0.01 0.000 
I(0.5 * log(landMS/materialsMS)^2) 0.02 0.00 0.000 
I(0.5 * log(capitalMS/materialsMS)^2) 0.19 0.01 0.000 
I(log(feedexpMS/materialsMS) * 
log(vetmedMS/materialsMS)) 0.01 0.01 0.276 
I(log(feedexpMS/materialsMS) * 
log(totalwagesMS/materialsMS)) -0.05 0.01 0.000 
I(log(feedexpMS/materialsMS) * log(landMS/materialsMS)) -0.07 0.01 0.000 
I(log(feedexpMS/materialsMS) * 
log(capitalMS/materialsMS)) -0.09 0.01 0.000 
I(log(vetmedMS/materialsMS) * 
log(totalwagesMS/materialsMS)) 0.01 0.01 0.261 
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I(log(vetmedMS/materialsMS) * log(landMS/materialsMS)) 0.01 0.01 0.559 
I(log(vetmedMS/materialsMS) * 
log(capitalMS/materialsMS)) -0.02 0.01 0.034 
I(log(totalwagesMS/materialsMS) * 
log(landMS/materialsMS)) 0.03 0.01 0.011 
I(log(totalwagesMS/materialsMS) * 
log(capitalMS/materialsMS)) -0.03 0.01 0.001 
I(log(landMS/materialsMS) * log(capitalMS/materialsMS)) -0.04 0.01 0.001 
I(log(feedexpMS/materialsMS) * log(grossmilkMS)) -0.04 0.01 0.001 
I(log(feedexpMS/materialsMS) * log(grossotherMS)) 0.03 0.01 0.001 
I(log(vetmedMS/materialsMS) * log(grossmilkMS)) -0.01 0.01 0.171 
I(log(vetmedMS/materialsMS) * log(grossotherMS)) 0.00 0.01 0.936 
I(log(totalwagesMS/materialsMS) * log(grossmilkMS)) 0.04 0.01 0.000 
I(log(totalwagesMS/materialsMS) * log(grossotherMS)) -0.01 0.01 0.024 
I(log(landMS/materialsMS) * log(grossmilkMS)) -0.04 0.01 0.000 
I(log(landMS/materialsMS) * log(grossotherMS)) 0.02 0.01 0.044 
I(log(capitalMS/materialsMS) * log(grossmilkMS)) 0.00 0.01 0.945 
I(log(capitalMS/materialsMS) * log(grossotherMS)) -0.01 0.01 0.071 
Regnskabsaar2012 0.01 0.00 0.009 
Regnskabsaar2013 -0.05 0.00 0.000 
Regnskabsaar2014 -0.04 0.00 0.000 
Regnskabsaar2015 0.04 0.00 0.000 
milkingsystem2 0.03 0.00 0.000 
milkingsystem3 0.02 0.00 0.000 
jersey 0.04 0.00 0.000 
organic 0.00 0.00 0.336 
Z_(Intercept) 0.14 0.02 0.000 
Z_mastitis 0.09 0.04 0.015 
Z_hoofdis 0.00 0.01 0.706 
Z_reprodis 0.14 0.04 0.000 
Z_otherdis 0.03 0.03 0.398 
Z_cell1 -0.11 0.03 0.000 
Z_viable1 -0.08 0.02 0.000 
Z_spore1 -0.07 0.02 0.001 
sigmaSq 0.02 0.00 0.000 
gamma 0.56 0.09 0.000 
panel data 

   number of cross-sections = 1810  
   number of time periods = 5  
   total number of observations = 8198  
   thus there are 852 observations not in the panel 
   mean efficiency of each year 
        2011      2012      2013      2014      2015  
       0.943     0.943     0.946     0.946     0.947 
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mean efficiency: 0.945 
   Source: Model result from R.  

 

Table B.5: Estimated parameters of the TL ODF (TLodfres2) 
Estimated Translog ODF with milk quality indicators, manager age, and consultant  
  Estimate Std. Error p-value 
(Intercept) -0.03 0.01 0.000 
log(grossotherMS/grossmilkMS) 0.16 0.00 0.000 
I(0.5 * log(grossotherMS/grossmilkMS)^2) 0.07 0.00 0.000 
log(feedexpMS) -0.38 0.00 0.000 
log(vetmedMS) -0.02 0.00 0.000 
log(totalwagesMS) -0.10 0.00 0.000 
log(landMS) -0.17 0.01 0.000 
log(capitalMS) -0.19 0.00 0.000 
log(materialsMS) -0.17 0.01 0.000 
I(0.5 * log(feedexpMS)^2) -0.24 0.02 0.000 
I(0.5 * log(vetmedMS)^2) 0.00 0.01 0.466 
I(0.5 * log(totalwagesMS)^2) -0.05 0.01 0.000 
I(0.5 * log(landMS)^2) -0.02 0.00 0.000 
I(0.5 * log(capitalMS)^2) -0.21 0.01 0.000 
I(0.5 * log(materialsMS)^2) -0.17 0.03 0.000 
I(log(feedexpMS) * log(vetmedMS)) -0.01 0.01 0.214 
I(log(feedexpMS) * log(totalwagesMS)) 0.02 0.01 0.065 
I(log(feedexpMS) * log(landMS)) 0.05 0.01 0.000 
I(log(feedexpMS) * log(capitalMS)) 0.11 0.01 0.000 
I(log(feedexpMS) * log(materialsMS)) 0.06 0.02 0.002 
I(log(vetmedMS) * log(totalwagesMS)) -0.01 0.01 0.120 
I(log(vetmedMS) * log(landMS)) -0.01 0.01 0.220 
I(log(vetmedMS) * log(capitalMS)) 0.00 0.01 0.673 
I(log(vetmedMS) * log(materialsMS)) 0.04 0.01 0.005 
I(log(totalwagesMS) * log(landMS)) -0.05 0.01 0.000 
I(log(totalwagesMS) * log(capitalMS)) 0.02 0.01 0.095 
I(log(totalwagesMS) * log(materialsMS)) 0.02 0.01 0.220 
I(log(landMS) * log(capitalMS)) 0.08 0.01 0.000 
I(log(landMS) * log(materialsMS)) 0.00 0.02 0.958 
I(log(capitalMS) * log(materialsMS)) 0.02 0.02 0.313 
I(log(feedexpMS) * log(grossotherMS/grossmilkMS)) -0.03 0.01 0.000 
I(log(vetmedMS) * log(grossotherMS/grossmilkMS)) 0.00 0.01 0.560 
I(log(totalwagesMS) * log(grossotherMS/grossmilkMS)) 0.01 0.01 0.021 
I(log(landMS) * log(grossotherMS/grossmilkMS)) -0.02 0.01 0.022 
I(log(capitalMS) * log(grossotherMS/grossmilkMS)) 0.00 0.01 0.741 
I(log(materialsMS) * log(grossotherMS/grossmilkMS)) 0.02 0.01 0.144 
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Regnskabsaar2012 -0.01 0.00 0.014 
Regnskabsaar2013 0.06 0.00 0.000 
Regnskabsaar2014 0.05 0.00 0.000 
Regnskabsaar2015 -0.05 0.00 0.000 
milkingsystem2 -0.02 0.00 0.000 
milkingsystem3 -0.01 0.00 0.000 
jersey -0.04 0.00 0.000 
organic 0.00 0.00 0.461 
Z_(Intercept) 0.03 0.06 0.649 
Z_cell1 -0.19 0.04 0.000 
Z_viable1 -0.11 0.02 0.000 
Z_spore1 -0.13 0.03 0.000 
Z_managerage 0.00 0.00 0.000 
Z_consultant 0.00 0.01 0.728 
sigmaSq 0.02 0.00 0.000 
gamma 0.69 0.05 0.000 
panel data 

   number of cross-sections = 1810  
   number of time periods = 5  
   total number of observations = 8198  
   thus there are 852 observations not in the panel 
   mean efficiency of each year 
        2011      2012      2013      2014      2015  
      0.942      0.942     0.945     0.945     0.946 
   mean efficiency: 0.944 
   Source: Model result from R.  
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Table B.8: Average input and output shares from 2011-2015 

Output 2011 2012 2013 2014 2015 

Average 
share 
from              

2011 to 
2015 

Milk 0.83 0.84 0.86 0.86 0.84 0.85 
Other  0.17 0.16 0.14 0.14 0.16 0.15 
Input             
Feed expenditure 0.22 0.23 0.25 0.24 0.24 0.24 
Veterinary and 
medicine 0.03 0.03 0.03 0.02 0.02 0.03 

Labour 0.17 0.17 0.17 0.18 0.18 0.17 
Land 0.00 0.00 0.00 0.00 0.00 0.00 
Capital 0.33 0.32 0.31 0.31 0.30 0.31 
Materials  0.26 0.26 0.25 0.25 0.25 0.26 
Source: Own calculations  

 

Table B.9: Average input and output costs from 2011-2015 (2010-values) 
  2011 2012 2013 2014 2015 
Milk  3757269.0 3944707.0 4150389.0 4242871.0 4579131.0 
Other 764388.0 760526.8 633918.4 667035.8 872933.2 
Feed expenditure 1023408.0 1087124.0 1259042.0 1238759.0 1269001.0 
Veterinary and 
medicine 117526.4 115890.4 121031.8 119066.7 115840.6 

Labour 752285.4 794242.1 818088.5 894183.4 917539.6 
Land 157.2 160.4 166.4 171.4 174.5 
Capital 1500271.0 1487390.0 1503115.0 1548202.0 1531278.0 
Materials  1151687.0 1174796.0 1195350.0 1220485.0 1234701.0 
Source: Own calculations  
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Figure B.2: Comparison of technical efficiency between the TL IDF and the TL 
ODF from 2011-2015 
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Source: Own plots from R 
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13.3 Appendix C – Summary Statistics 

Table C.10: Estimated parameters of the unrestricted Cobb-Douglas IDF 
(CDidfunres) 

  Estimate Std. Error p-value 
(Intercept) 0.04 0.00 0.000 
log(grossmilkMS) -0.81 0.00 0.000 
log(grossotherMS) -0.12 0.00 0.000 
log(feedexpMS/materialsMS) 0.37 0.00 0.000 
log(vetmedMS/materialsMS) 0.04 0.00 0.000 
log(totalwagesMS/materialsMS) 0.07 0.00 0.000 
log(landMS/materialsMS) 0.14 0.00 0.000 
log(capitalMS/materialsMS) 0.16 0.00 0.000 
Regnskabsaar2012 0.01 0.00 0.000 
Regnskabsaar2013 -0.04 0.00 0.000 
Regnskabsaar2014 -0.03 0.00 0.000 
Regnskabsaar2015 0.05 0.00 0.000 
milkingsystem2 0.02 0.00 0.000 
milkingsystem3 0.02 0.00 0.000 
jersey 0.03 0.00 0.000 
organic 0.00 0.00 0.846 
Z_(Intercept) 0.08 0.01 0.000 
Z_mastitis 0.07 0.02 0.000 
Z_hoofdis 0.00 0.00 0.984 
Z_reprodis 0.09 0.02 0.000 
Z_otherdis 0.02 0.02 0.461 
Z_cell1 -0.04 0.00 0.000 
Z_viable1 -0.03 0.01 0.000 
Z_spore1 -0.02 0.00 0.000 
Z_consultant 0.01 0.00 0.032 
Z_managerage 0.00 0.00 0.047 
sigmaSq 0.01 0.00 0.000 
gamma 0.00 0.01 0.973 
panel data 

   number of cross-sections = 1810  
  number of time periods = 5  

   total number of observations = 8198  
  thus there are 852 observations not in the panel 

 mean efficiency of each year 
        2011      2012      2013      2014      2015  

       0.954    0.950     0.953      0.951     0.952 
  mean efficiency: 0.952 

   Source: Model result from R. 
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Table C.11: Estimated parameters of the unrestricted Translog IDF (TLidfunres) 
  Estimate 

Std. 
Error p-value 

(Intercept) 0.04 0.01 0.000 
log(grossmilkMS) -0.77 0.00 0.000 
log(grossotherMS) -0.16 0.00 0.000 
I(0.5 * log(grossmilkMS)^2) -0.11 0.01 0.000 
I(0.5 * log(grossotherMS)^2) -0.07 0.00 0.000 
I(log(grossmilkMS) * log(grossotherMS)) 0.09 0.00 0.000 
log(feedexpMS/materialsMS) 0.34 0.01 0.000 
log(vetmedMS/materialsMS) 0.04 0.00 0.000 
log(totalwagesMS/materialsMS) 0.09 0.00 0.000 
log(landMS/materialsMS) 0.18 0.01 0.000 
log(capitalMS/materialsMS) 0.17 0.00 0.000 
I(0.5 * log(feedexpMS/materialsMS)^2) 0.24 0.02 0.000 
I(0.5 * log(vetmedMS/materialsMS)^2) 0.03 0.01 0.000 
I(0.5 * log(totalwagesMS/materialsMS)^2) 0.09 0.01 0.000 
I(0.5 * log(landMS/materialsMS)^2) 0.01 0.00 0.000 
I(0.5 * log(capitalMS/materialsMS)^2) 0.19 0.01 0.000 
I(log(feedexpMS/materialsMS) * 
log(vetmedMS/materialsMS)) 0.01 0.01 0.268 
I(log(feedexpMS/materialsMS) * 
log(totalwagesMS/materialsMS)) -0.05 0.01 0.000 
I(log(feedexpMS/materialsMS) * log(landMS/materialsMS)) -0.07 0.01 0.000 
I(log(feedexpMS/materialsMS) * 
log(capitalMS/materialsMS)) -0.09 0.01 0.000 
I(log(vetmedMS/materialsMS) * 
log(totalwagesMS/materialsMS)) 0.01 0.01 0.263 
I(log(vetmedMS/materialsMS) * log(landMS/materialsMS)) 0.00 0.01 0.621 
I(log(vetmedMS/materialsMS) * 
log(capitalMS/materialsMS)) -0.02 0.01 0.023 
I(log(totalwagesMS/materialsMS) * 
log(landMS/materialsMS)) 0.03 0.01 0.010 
I(log(totalwagesMS/materialsMS) * 
log(capitalMS/materialsMS)) -0.03 0.01 0.001 
I(log(landMS/materialsMS) * log(capitalMS/materialsMS)) -0.04 0.01 0.001 
I(log(feedexpMS/materialsMS) * log(grossmilkMS)) -0.04 0.01 0.002 
I(log(feedexpMS/materialsMS) * log(grossotherMS)) 0.03 0.01 0.001 
I(log(vetmedMS/materialsMS) * log(grossmilkMS)) -0.01 0.01 0.210 
I(log(vetmedMS/materialsMS) * log(grossotherMS)) 0.00 0.01 0.876 
I(log(totalwagesMS/materialsMS) * log(grossmilkMS)) 0.04 0.01 0.000 
I(log(totalwagesMS/materialsMS) * log(grossotherMS)) -0.01 0.01 0.027 
I(log(landMS/materialsMS) * log(grossmilkMS)) -0.04 0.01 0.000 
I(log(landMS/materialsMS) * log(grossotherMS)) 0.01 0.01 0.073 
I(log(capitalMS/materialsMS) * log(grossmilkMS)) 0.00 0.01 0.992 
I(log(capitalMS/materialsMS) * log(grossotherMS)) -0.01 0.01 0.088 
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Regnskabsaar2012 0.01 0.00 0.002 
Regnskabsaar2013 -0.05 0.00 0.000 
Regnskabsaar2014 -0.04 0.00 0.000 
Regnskabsaar2015 0.05 0.00 0.000 
milkingsystem2 0.03 0.00 0.000 
milkingsystem3 0.02 0.00 0.000 
jersey 0.03 0.00 0.000 
organic 0.00 0.00 0.264 
Z_(Intercept) 0.09 0.03 0.005 
Z_mastitis 0.07 0.03 0.029 
Z_hoofdis 0.00 0.01 0.941 
Z_reprodis 0.11 0.03 0.000 
Z_otherdis 0.03 0.03 0.376 
Z_cell1 -0.07 0.02 0.003 
Z_viable1 -0.06 0.02 0.002 
Z_spore1 -0.05 0.02 0.011 
Z_managerage 0.00 0.00 0.022 
Z_consultant 0.02 0.01 0.045 
sigmaSq 0.01 0.00 0.000 
gamma 0.42 0.12 0.001 
panel data 

   number of cross-sections = 1810  
   number of time periods = 5  
   total number of observations = 8198  
   thus there are 852 observations not in the panel 
   mean efficiency of each year 
        2011      2012      2013      2014      2015  
       0.938     0.937     0.940      0.939    0.940 
   mean efficiency: 0.939  
   Source: Model result from R.  
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Table C.12: Estimated parameters of the restricted Translog IDF with indicators of 
diseases (TLidfres1) 

  Estimate 
Std. 

Error p-value 
(Intercept) 0.02 0.00 0.000 
log(grossmilkMS) -0.77 0.00 0.000 
log(grossotherMS) -0.16 0.00 0.000 
I(0.5 * log(grossmilkMS)^2) -0.11 0.01 0.000 
I(0.5 * log(grossotherMS)^2) -0.07 0.00 0.000 
I(log(grossmilkMS) * log(grossotherMS)) 0.09 0.00 0.000 
log(feedexpMS/materialsMS) 0.34 0.00 0.000 
log(vetmedMS/materialsMS) 0.03 0.00 0.000 
log(totalwagesMS/materialsMS) 0.09 0.00 0.000 
log(landMS/materialsMS) 0.18 0.00 0.000 
log(capitalMS/materialsMS) 0.17 0.00 0.000 
I(0.5 * log(feedexpMS/materialsMS)^2) 0.24 0.02 0.000 
I(0.5 * log(vetmedMS/materialsMS)^2) 0.03 0.01 0.000 
I(0.5 * log(totalwagesMS/materialsMS)^2) 0.09 0.01 0.000 
I(0.5 * log(landMS/materialsMS)^2) 0.01 0.00 0.001 
I(0.5 * log(capitalMS/materialsMS)^2) 0.20 0.01 0.000 
I(log(feedexpMS/materialsMS) * 
log(vetmedMS/materialsMS)) 0.02 0.01 0.119 
I(log(feedexpMS/materialsMS) * 
log(totalwagesMS/materialsMS)) -0.05 0.01 0.000 
I(log(feedexpMS/materialsMS) * log(landMS/materialsMS)) -0.06 0.01 0.000 
I(log(feedexpMS/materialsMS) * 
log(capitalMS/materialsMS)) -0.09 0.01 0.000 
I(log(vetmedMS/materialsMS) * 
log(totalwagesMS/materialsMS)) 0.01 0.01 0.130 
I(log(vetmedMS/materialsMS) * log(landMS/materialsMS)) 0.00 0.01 0.661 
I(log(vetmedMS/materialsMS) * log(capitalMS/materialsMS)) -0.02 0.01 0.013 
I(log(totalwagesMS/materialsMS) * 
log(landMS/materialsMS)) 0.03 0.01 0.008 
I(log(totalwagesMS/materialsMS) * 
log(capitalMS/materialsMS)) -0.03 0.01 0.001 
I(log(landMS/materialsMS) * log(capitalMS/materialsMS)) -0.04 0.01 0.000 
I(log(feedexpMS/materialsMS) * log(grossmilkMS)) -0.04 0.01 0.001 
I(log(feedexpMS/materialsMS) * log(grossotherMS)) 0.03 0.01 0.000 
I(log(vetmedMS/materialsMS) * log(grossmilkMS)) -0.01 0.01 0.084 
I(log(vetmedMS/materialsMS) * log(grossotherMS)) 0.00 0.01 0.739 
I(log(totalwagesMS/materialsMS) * log(grossmilkMS)) 0.04 0.01 0.000 
I(log(totalwagesMS/materialsMS) * log(grossotherMS)) -0.01 0.01 0.019 
I(log(landMS/materialsMS) * log(grossmilkMS)) -0.04 0.01 0.000 
I(log(landMS/materialsMS) * log(grossotherMS)) 0.02 0.01 0.025 
I(log(capitalMS/materialsMS) * log(grossmilkMS)) 0.00 0.01 0.787 
I(log(capitalMS/materialsMS) * log(grossotherMS)) -0.02 0.01 0.040 
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Regnskabsaar2012 0.01 0.00 0.016 
Regnskabsaar2013 -0.05 0.00 0.000 
Regnskabsaar2014 -0.04 0.00 0.000 
Regnskabsaar2015 0.05 0.00 0.000 
milkingsystem2 0.03 0.00 0.000 
milkingsystem3 0.02 0.00 0.000 
jersey 0.04 0.00 0.000 
organic 0.00 0.00 0.213 
Z_(Intercept) -3.67 0.60 0.000 
Z_mastitis 0.27 0.21 0.212 
Z_hoofdis -0.26 0.04 0.000 
Z_reprodis 1.40 0.29 0.000 
Z_otherdis -0.65 0.11 0.000 
Z_managerage 0.01 0.00 0.000 
Z_consultant 0.37 0.06 0.000 
sigmaSq 0.13 0.02 0.000 
gamma 0.95 0.01 0.000 
panel data 

   number of cross-sections = 1810  
   number of time periods = 5  
   total number of observations = 8198  
   thus there are 852 observations not in the panel 
   mean efficiency of each year 
        2011      2012      2013      2014      2015  
      0.954     0.955      0.955     0.955     0.955 
   mean efficiency: 0.955 
   Source: Model result from R.  
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Table C.13: Estimated parameters of the restricted Translog IDF with milk quality 
indicators (TLidfres2) 

  Estimate 
Std. 

Error p-value 
(Intercept) 0.03 0.00 0.000 
log(grossmilkMS) -0.77 0.00 0.000 
log(grossotherMS) -0.16 0.00 0.000 
I(0.5 * log(grossmilkMS)^2) -0.11 0.01 0.000 
I(0.5 * log(grossotherMS)^2) -0.07 0.00 0.000 
I(log(grossmilkMS) * log(grossotherMS)) 0.09 0.00 0.000 
log(feedexpMS/materialsMS) 0.34 0.00 0.000 
log(vetmedMS/materialsMS) 0.03 0.00 0.000 
log(totalwagesMS/materialsMS) 0.09 0.00 0.000 
log(landMS/materialsMS) 0.19 0.00 0.000 
log(capitalMS/materialsMS) 0.17 0.00 0.000 
I(0.5 * log(feedexpMS/materialsMS)^2) 0.24 0.02 0.000 
I(0.5 * log(vetmedMS/materialsMS)^2) 0.03 0.01 0.000 
I(0.5 * log(totalwagesMS/materialsMS)^2) 0.09 0.01 0.000 
I(0.5 * log(landMS/materialsMS)^2) 0.02 0.00 0.000 
I(0.5 * log(capitalMS/materialsMS)^2) 0.19 0.01 0.000 
I(log(feedexpMS/materialsMS) * 
log(vetmedMS/materialsMS)) 0.01 0.01 0.214 
I(log(feedexpMS/materialsMS) * 
log(totalwagesMS/materialsMS)) -0.05 0.01 0.000 
I(log(feedexpMS/materialsMS) * log(landMS/materialsMS)) -0.07 0.01 0.000 
I(log(feedexpMS/materialsMS) * 
log(capitalMS/materialsMS)) -0.09 0.01 0.000 
I(log(vetmedMS/materialsMS) * 
log(totalwagesMS/materialsMS)) 0.01 0.01 0.354 
I(log(vetmedMS/materialsMS) * log(landMS/materialsMS)) 0.01 0.01 0.386 
I(log(vetmedMS/materialsMS) * log(capitalMS/materialsMS)) -0.02 0.01 0.027 
I(log(totalwagesMS/materialsMS) * 
log(landMS/materialsMS)) 0.03 0.01 0.013 
I(log(totalwagesMS/materialsMS) * 
log(capitalMS/materialsMS)) -0.03 0.01 0.003 
I(log(landMS/materialsMS) * log(capitalMS/materialsMS)) -0.04 0.01 0.001 
I(log(feedexpMS/materialsMS) * log(grossmilkMS)) -0.04 0.01 0.001 
I(log(feedexpMS/materialsMS) * log(grossotherMS)) 0.03 0.01 0.000 
I(log(vetmedMS/materialsMS) * log(grossmilkMS)) -0.01 0.01 0.298 
I(log(vetmedMS/materialsMS) * log(grossotherMS)) 0.00 0.01 0.845 
I(log(totalwagesMS/materialsMS) * log(grossmilkMS)) 0.04 0.01 0.000 
I(log(totalwagesMS/materialsMS) * log(grossotherMS)) -0.01 0.01 0.021 
I(log(landMS/materialsMS) * log(grossmilkMS)) -0.04 0.01 0.000 
I(log(landMS/materialsMS) * log(grossotherMS)) 0.02 0.01 0.041 
I(log(capitalMS/materialsMS) * log(grossmilkMS)) 0.00 0.01 0.957 
I(log(capitalMS/materialsMS) * log(grossotherMS)) -0.01 0.01 0.060 
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Regnskabsaar2012 0.01 0.00 0.010 
Regnskabsaar2013 -0.05 0.00 0.000 
Regnskabsaar2014 -0.04 0.00 0.000 
Regnskabsaar2015 0.04 0.00 0.000 
milkingsystem2 0.03 0.00 0.000 
milkingsystem3 0.02 0.00 0.000 
jersey 0.04 0.00 0.000 
organic 0.00 0.00 0.200 
Z_(Intercept) -0.02 0.09 0.808 
Z_cell1 -0.21 0.04 0.000 
Z_viable1 -0.15 0.04 0.000 
Z_spore1 -0.15 0.04 0.000 
Z_managerage 0.00 0.00 0.033 
Z_consultant 0.05 0.02 0.011 
sigmaSq 0.03 0.00 0.000 
gamma 0.73 0.05 0.000 
panel data 

   number of cross-sections = 1810  
   number of time periods = 5  
   total number of observations = 8198  
   thus there are 852 observations not in the panel 
   mean efficiency of each year 
        2011      2012      2013      2014      2015  
       0.951     0.951     0.954     0.954     0.955 
   mean efficiency: 0.953 
   Source: Model result from R.  
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Table C.14: Estimated parameters of the restricted Translog IDF with milk quality 
indicators. indicators of diseases and “hours” (TLidfhourshours) 

  Estimate 
Std. 

Error p-value 
(Intercept) 0.03 0.00 0.000 
log(grossmilkMS) -0.76 0.00 0.000 
log(grossotherMS) -0.13 0.00 0.000 
I(0.5 * log(grossmilkMS)^2) -0.09 0.01 0.000 
I(0.5 * log(grossotherMS)^2) -0.06 0.00 0.000 
I(log(grossmilkMS) * log(grossotherMS)) 0.08 0.00 0.000 
log(feedexpMS/materialsMS) 0.30 0.01 0.000 
log(vetmedMS/materialsMS) 0.02 0.00 0.000 
log(hoursMS/materialsMS) 0.28 0.01 0.000 
log(landMS/materialsMS) 0.08 0.01 0.000 
log(capitalMS/materialsMS) 0.16 0.00 0.000 
I(0.5 * log(feedexpMS/materialsMS)^2) 0.15 0.02 0.000 
I(0.5 * log(vetmedMS/materialsMS)^2) 0.02 0.01 0.003 
I(0.5 * log(hoursMS/materialsMS)^2) 0.62 0.03 0.000 
I(0.5 * log(landMS/materialsMS)^2) 0.01 0.00 0.102 
I(0.5 * log(capitalMS/materialsMS)^2) 0.16 0.01 0.000 
I(log(feedexpMS/materialsMS) * 
log(vetmedMS/materialsMS)) 0.03 0.01 0.009 
I(log(feedexpMS/materialsMS) * log(hoursMS/materialsMS)) -0.15 0.02 0.000 
I(log(feedexpMS/materialsMS) * log(landMS/materialsMS)) -0.03 0.01 0.050 
I(log(feedexpMS/materialsMS) * 
log(capitalMS/materialsMS)) -0.04 0.01 0.009 
I(log(vetmedMS/materialsMS) * log(hoursMS/materialsMS)) -0.04 0.02 0.007 
I(log(vetmedMS/materialsMS) * log(landMS/materialsMS)) 0.02 0.01 0.090 
I(log(vetmedMS/materialsMS) * log(capitalMS/materialsMS)) -0.01 0.01 0.061 
I(log(hoursMS/materialsMS) * log(landMS/materialsMS)) -0.06 0.02 0.002 
I(log(hoursMS/materialsMS) * log(capitalMS/materialsMS)) -0.11 0.02 0.000 
I(log(landMS/materialsMS) * log(capitalMS/materialsMS)) -0.01 0.01 0.358 
I(log(feedexpMS/materialsMS) * log(grossmilkMS)) -0.01 0.01 0.279 
I(log(feedexpMS/materialsMS) * log(grossotherMS)) 0.02 0.01 0.014 
I(log(vetmedMS/materialsMS) * log(grossmilkMS)) 0.00 0.01 0.550 
I(log(vetmedMS/materialsMS) * log(grossotherMS)) -0.01 0.01 0.282 
I(log(hoursMS/materialsMS) * log(grossmilkMS)) 0.05 0.02 0.002 
I(log(hoursMS/materialsMS) * log(grossotherMS)) -0.01 0.01 0.487 
I(log(landMS/materialsMS) * log(grossmilkMS)) -0.01 0.01 0.518 
I(log(landMS/materialsMS) * log(grossotherMS)) 0.01 0.01 0.137 
I(log(capitalMS/materialsMS) * log(grossmilkMS)) -0.04 0.01 0.000 
I(log(capitalMS/materialsMS) * log(grossotherMS)) -0.01 0.01 0.059 
Regnskabsaar2012 -0.01 0.00 0.012 
Regnskabsaar2013 -0.06 0.00 0.000 
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Regnskabsaar2014 -0.04 0.00 0.000 
Regnskabsaar2015 0.03 0.00 0.000 
milkingsystem2 0.01 0.00 0.014 
milkingsystem3 -0.01 0.00 0.001 
jersey 0.03 0.00 0.000 
organic -0.01 0.00 0.027 
Z_(Intercept) -0.13 0.06 0.024 
Z_mastitis 0.20 0.09 0.025 
Z_hoofdis -0.70 0.20 0.000 
Z_reprodis 0.39 0.19 0.039 
Z_otherdis -0.41 0.11 0.000 
Z_cell1 -0.90 0.22 0.000 
Z_viable1 -0.39 0.10 0.000 
Z_spore1 -0.85 0.24 0.000 
sigmaSq 0.09 0.02 0.000 
gamma 0.93 0.02 0.000 
panel data 

   number of cross-sections = 1810  
   number of time periods = 5  
   total number of observations = 8198  
   thus there are 852 observations not in the panel 
   mean efficiency of each year 
        2011      2012      2013      2014      2015  
       0.958     0.959     0.962     0.962     0.963 
   mean efficiency: 0.961 
   Source: Model result from R.  
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Table C.6: Estimated parameters of the unrestricted Cobb-Douglas ODF 
(CDodfunres) 

  Estimate Std. Error p-value 
(Intercept) -0.05 0.01 0.000 
log(grossotherMS/grossmilkMS) 0.13 0.00 0.000 
log(feedexpMS) -0.48 0.00 0.000 
log(vetmedMS) -0.04 0.00 0.000 
log(totalwagesMS) -0.08 0.00 0.000 
log(landMS) -0.20 0.00 0.000 
log(capitalMS) -0.18 0.00 0.000 
Regnskabsaar2012 -0.01 0.00 0.017 
Regnskabsaar2013 0.06 0.00 0.000 
Regnskabsaar2014 0.05 0.00 0.000 
Regnskabsaar2015 -0.04 0.00 0.000 
milkingsystem2 -0.03 0.00 0.000 
milkingsystem3 -0.02 0.00 0.000 
jersey -0.04 0.00 0.000 
organic -0.01 0.00 0.114 
Z_(Intercept) 0.08 0.02 0.000 
Z_mastitis 0.10 0.04 0.011 
Z_hoofdis -0.22 0.06 0.001 
Z_reprodis 0.03 0.02 0.134 
Z_otherdis 0.03 0.03 0.321 
Z_cell1 -0.11 0.02 0.000 
Z_viable1 -0.05 0.01 0.000 
Z_spore1 -0.08 0.01 0.000 
Z_consultant -0.02 0.01 0.027 
Z_managerage 0.00 0.00 0.000 
sigmaSq 0.02 0.00 0.000 
gamma 0.27 0.04 0.000 
panel data 

   number of cross-sections = 1810  
  number of time periods = 5  

   total number of observations = 8198  
  thus there are 852 observations not in the panel 

 mean efficiency of each year 
        2011      2012      2013      2014      2015  

      0.951     0.951     0.954     0.953     0.955 
  mean efficiency: 0.953 

   Source: Model result from R.  
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Table C.7: Estimated parameters of the unrestricted Translog ODF (TLodfunres) 
  Estimate Std. Error p-value 
(Intercept) -0.03 0.00 0.000 
log(grossotherMS/grossmilkMS) 0.16 0.00 0.000 
I(0.5 * log(grossotherMS/grossmilkMS)^2) 0.07 0.00 0.000 
log(feedexpMS) -0.38 0.00 0.000 
log(vetmedMS) -0.02 0.00 0.000 
log(totalwagesMS) -0.10 0.00 0.000 
log(landMS) -0.17 0.01 0.000 
log(capitalMS) -0.19 0.00 0.000 
log(materialsMS) -0.17 0.01 0.000 
I(0.5 * log(feedexpMS)^2) -0.24 0.02 0.000 
I(0.5 * log(vetmedMS)^2) -0.01 0.01 0.425 
I(0.5 * log(totalwagesMS)^2) -0.05 0.01 0.000 
I(0.5 * log(landMS)^2) -0.02 0.00 0.000 
I(0.5 * log(capitalMS)^2) -0.21 0.01 0.000 
I(0.5 * log(materialsMS)^2) -0.17 0.03 0.000 
I(log(feedexpMS) * log(vetmedMS)) -0.01 0.01 0.210 
I(log(feedexpMS) * log(totalwagesMS)) 0.02 0.01 0.081 
I(log(feedexpMS) * log(landMS)) 0.05 0.01 0.000 
I(log(feedexpMS) * log(capitalMS)) 0.11 0.01 0.000 
I(log(feedexpMS) * log(materialsMS)) 0.07 0.02 0.001 
I(log(vetmedMS) * log(totalwagesMS)) -0.01 0.01 0.129 
I(log(vetmedMS) * log(landMS)) -0.01 0.01 0.207 
I(log(vetmedMS) * log(capitalMS)) 0.00 0.01 0.626 
I(log(vetmedMS) * log(materialsMS)) 0.04 0.01 0.005 
I(log(totalwagesMS) * log(landMS)) -0.05 0.01 0.000 
I(log(totalwagesMS) * log(capitalMS)) 0.02 0.01 0.075 
I(log(totalwagesMS) * log(materialsMS)) 0.02 0.01 0.232 
I(log(landMS) * log(capitalMS)) 0.08 0.01 0.000 
I(log(landMS) * log(materialsMS)) 0.00 0.02 0.999 
I(log(capitalMS) * log(materialsMS)) 0.02 0.02 0.344 
I(log(feedexpMS) * log(grossotherMS/grossmilkMS)) -0.03 0.01 0.000 
I(log(vetmedMS) * log(grossotherMS/grossmilkMS)) 0.00 0.01 0.581 
I(log(totalwagesMS) * log(grossotherMS/grossmilkMS)) 0.01 0.01 0.027 
I(log(landMS) * log(grossotherMS/grossmilkMS)) -0.02 0.01 0.019 
I(log(capitalMS) * log(grossotherMS/grossmilkMS)) 0.00 0.01 0.779 
I(log(materialsMS) * log(grossotherMS/grossmilkMS)) 0.02 0.01 0.127 
Regnskabsaar2012 -0.01 0.00 0.017 
Regnskabsaar2013 0.06 0.00 0.000 
Regnskabsaar2014 0.05 0.00 0.000 
Regnskabsaar2015 -0.05 0.00 0.000 
milkingsystem2 -0.02 0.00 0.000 
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milkingsystem3 -0.01 0.00 0.000 
jersey -0.04 0.00 0.000 
organic 0.00 0.00 0.497 
Z_(Intercept) 0.02 0.05 0.624 
Z_mastitis 0.05 0.04 0.169 
Z_hoofdis -0.12 0.05 0.017 
Z_reprodis 0.03 0.03 0.268 
Z_otherdis -0.03 0.03 0.468 
Z_cell1 -0.19 0.03 0.000 
Z_viable1 -0.11 0.02 0.000 
Z_spore1 -0.13 0.03 0.000 
Z_managerage 0.00 0.00 0.000 
Z_consultant 0.00 0.01 0.772 
sigmaSq 0.02 0.00 0.000 
gamma 0.70 0.05 0.000 
panel data 

   number of cross-sections = 1810  
   number of time periods = 5  
   total number of observations = 8198  
   thus there are 852 observations not in the panel 
   mean efficiency of each year 
        2011      2012      2013      2014      2015  
       0.942     0.943     0.946     0.946     0.947 
   mean efficiency: 0.945 
   Source: Model result from R.  

 

 

 

 

 

 

 

 

 

 

 

 

 



122 

Table C.8: Estimated parameters of the restricted Translog ODF with indicators of 
diseases (TLodfres1) 

  Estimate Std. Error p-value 
(Intercept) -0.02 0.00 0.000 
log(grossotherMS/grossmilkMS) 0.16 0.00 0.000 
I(0.5 * log(grossotherMS/grossmilkMS)^2) 0.08 0.00 0.000 
log(feedexpMS) -0.38 0.01 0.000 
log(vetmedMS) -0.02 0.00 0.000 
log(totalwagesMS) -0.10 0.00 0.000 
log(landMS) -0.17 0.01 0.000 
log(capitalMS) -0.19 0.01 0.000 
log(materialsMS) -0.18 0.01 0.000 
I(0.5 * log(feedexpMS)^2) -0.23 0.02 0.000 
I(0.5 * log(vetmedMS)^2) 0.00 0.01 0.803 
I(0.5 * log(totalwagesMS)^2) -0.04 0.01 0.000 
I(0.5 * log(landMS)^2) -0.02 0.00 0.000 
I(0.5 * log(capitalMS)^2) -0.21 0.01 0.000 
I(0.5 * log(materialsMS)^2) -0.17 0.03 0.000 
I(log(feedexpMS) * log(vetmedMS)) -0.02 0.01 0.121 
I(log(feedexpMS) * log(totalwagesMS)) 0.02 0.01 0.116 
I(log(feedexpMS) * log(landMS)) 0.04 0.01 0.001 
I(log(feedexpMS) * log(capitalMS)) 0.11 0.01 0.000 
I(log(feedexpMS) * log(materialsMS)) 0.07 0.02 0.000 
I(log(vetmedMS) * log(totalwagesMS)) -0.01 0.01 0.036 
I(log(vetmedMS) * log(landMS)) -0.01 0.01 0.348 
I(log(vetmedMS) * log(capitalMS)) 0.01 0.01 0.466 
I(log(vetmedMS) * log(materialsMS)) 0.04 0.01 0.008 
I(log(totalwagesMS) * log(landMS)) -0.05 0.01 0.000 
I(log(totalwagesMS) * log(capitalMS)) 0.02 0.01 0.034 
I(log(totalwagesMS) * log(materialsMS)) 0.02 0.01 0.135 
I(log(landMS) * log(capitalMS)) 0.08 0.01 0.000 
I(log(landMS) * log(materialsMS)) 0.00 0.02 0.776 
I(log(capitalMS) * log(materialsMS)) 0.01 0.02 0.430 
I(log(feedexpMS) * log(grossotherMS/grossmilkMS)) -0.03 0.01 0.001 
I(log(vetmedMS) * log(grossotherMS/grossmilkMS)) 0.00 0.01 0.986 
I(log(totalwagesMS) * log(grossotherMS/grossmilkMS)) 0.01 0.01 0.028 
I(log(landMS) * log(grossotherMS/grossmilkMS)) -0.02 0.01 0.011 
I(log(capitalMS) * log(grossotherMS/grossmilkMS)) 0.00 0.01 0.585 
I(log(materialsMS) * log(grossotherMS/grossmilkMS)) 0.02 0.01 0.073 
Regnskabsaar2012 -0.01 0.00 0.047 
Regnskabsaar2013 0.05 0.00 0.000 
Regnskabsaar2014 0.04 0.00 0.000 
Regnskabsaar2015 -0.05 0.00 0.000 
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milkingsystem2 -0.03 0.00 0.000 
milkingsystem3 -0.01 0.00 0.000 
jersey -0.04 0.00 0.000 
organic 0.00 0.00 0.496 
Z_(Intercept) -13.46 1.30 0.000 
Z_mastitis -3.35 0.46 0.000 
Z_hoofdis -8.43 0.98 0.000 
Z_reprodis 0.46 0.16 0.004 
Z_otherdis -3.99 0.25 0.000 
Z_managerage 0.08 0.00 0.000 
Z_consultant 0.62 0.04 0.000 
sigmaSq 0.52 0.07 0.000 
gamma 0.98 0.00 0.000 
panel data 

   number of cross-sections = 1810  
   number of time periods = 5  
   total number of observations = 8198  
   thus there are 852 observations not in the panel 
   mean efficiency of each year 
        2011      2012      2013      2014      2015  
       0.951     0.953     0.953      0.953     0.953 
   mean efficiency: 0.953 
    Source: Model result from R.  
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Table C.9: Estimated parameters of the restricted Translog ODF with indicators of 
milk quality and without manager age and consultant (TLodfres3) 

  Estimate Std. Error p-value 
(Intercept) -0.03 0.00 0.000 
log(grossotherMS/grossmilkMS) 0.16 0.00 0.000 
I(0.5 * log(grossotherMS/grossmilkMS)^2) 0.07 0.00 0.000 
log(feedexpMS) -0.38 0.01 0.000 
log(vetmedMS) -0.02 0.00 0.000 
log(totalwagesMS) -0.10 0.00 0.000 
log(landMS) -0.17 0.01 0.000 
log(capitalMS) -0.19 0.00 0.000 
log(materialsMS) -0.17 0.01 0.000 
I(0.5 * log(feedexpMS)^2) -0.24 0.02 0.000 
I(0.5 * log(vetmedMS)^2) 0.00 0.01 0.557 
I(0.5 * log(totalwagesMS)^2) -0.04 0.01 0.000 
I(0.5 * log(landMS)^2) -0.02 0.00 0.000 
I(0.5 * log(capitalMS)^2) -0.21 0.01 0.000 
I(0.5 * log(materialsMS)^2) -0.17 0.03 0.000 
I(log(feedexpMS) * log(vetmedMS)) -0.01 0.01 0.241 
I(log(feedexpMS) * log(totalwagesMS)) 0.02 0.01 0.080 
I(log(feedexpMS) * log(landMS)) 0.05 0.01 0.000 
I(log(feedexpMS) * log(capitalMS)) 0.12 0.01 0.000 
I(log(feedexpMS) * log(materialsMS)) 0.06 0.02 0.002 
I(log(vetmedMS) * log(totalwagesMS)) -0.01 0.01 0.085 
I(log(vetmedMS) * log(landMS)) -0.01 0.01 0.228 
I(log(vetmedMS) * log(capitalMS)) 0.00 0.01 0.681 
I(log(vetmedMS) * log(materialsMS)) 0.04 0.01 0.005 
I(log(totalwagesMS) * log(landMS)) -0.05 0.01 0.000 
I(log(totalwagesMS) * log(capitalMS)) 0.02 0.01 0.086 
I(log(totalwagesMS) * log(materialsMS)) 0.02 0.01 0.236 
I(log(landMS) * log(capitalMS)) 0.08 0.01 0.000 
I(log(landMS) * log(materialsMS)) 0.00 0.02 0.940 
I(log(capitalMS) * log(materialsMS)) 0.02 0.02 0.349 
I(log(feedexpMS) * log(grossotherMS/grossmilkMS)) -0.03 0.01 0.000 
I(log(vetmedMS) * log(grossotherMS/grossmilkMS)) 0.00 0.01 0.617 
I(log(totalwagesMS) * log(grossotherMS/grossmilkMS)) 0.01 0.01 0.019 
I(log(landMS) * log(grossotherMS/grossmilkMS)) -0.02 0.01 0.014 
I(log(capitalMS) * log(grossotherMS/grossmilkMS)) 0.00 0.01 0.741 
I(log(materialsMS) * log(grossotherMS/grossmilkMS)) 0.02 0.01 0.122 
Regnskabsaar2012 -0.01 0.00 0.023 
Regnskabsaar2013 0.06 0.00 0.000 
Regnskabsaar2014 0.05 0.00 0.000 
Regnskabsaar2015 -0.04 0.00 0.000 
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milkingsystem2 -0.03 0.00 0.000 
milkingsystem3 -0.01 0.00 0.000 
jersey -0.04 0.00 0.000 
organic 0.00 0.00 0.588 
Z_(Intercept) 0.18 0.02 0.000 
Z_cell1 -0.23 0.05 0.000 
Z_viable1 -0.13 0.03 0.000 
Z_spore1 -0.16 0.04 0.000 
sigmaSq 0.03 0.01 0.000 
gamma 0.74 0.06 0.000 
panel data 

   number of cross-sections = 1810  
   number of time periods = 5  
   total number of observations = 8198  
   thus there are 852 observations not in the panel 
   mean efficiency of each year 
        2011      2012      2013      2014      2015  
       0.943     0.944     0.947     0.947     0.948 
   mean efficiency: 0.946 
   Source: Model result from R.  
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13.4 Appendix D – R-script 
 
### loading yearly data ###  
data1<-read.csv("aardata.csv",header=T,sep=";") 
library(zoo) 
library(dynlm) 
library(Formula) 
library(lmtest) 
library(plm) 
library(sandwich) 
library(Hmisc) 
library(boot) 
library(pastecs) 
dim(data1)  
pdata<-plm.data(data1,index=c("lbnr","Regnskabsaar")) 
 
### Defining variables ###  
### OUTPUT ###  
 
# Total gross output # 
pdata$grosstotal<-with(pdata,bru_i_alt-X140)  
 
# Gross output from milk # 
pdata$grossmilk <-with(pdata,X170+X171+X172)  
 
# Gross output from milk out of total gross output # 
pdata$grossmilkshare <-(pdata$grossmilk)/(pdata$grosstotal) 
 
# Gross output from other outputs than milk # 
pdata$grossother<-as.numeric(with(pdata,grosstotal-grossmilk)) 
  
### INPUT FACTORS ###  
# Feed expenditures minus internally produced/bought feed #  
pdata$feedexp<-with(pdata,(X250+X255+X260)*-1) 
 
# Internally produced/bought feed # 
pdata$ownfeed<-(pdata$X265*-1) 
 
# Vet, medicine, and vaccine expenditures # 
pdata$vetmed<-pdata$X270*-1 
 
# Hours #  
pdata$hours<- as.numeric(pdata$norm_t_ejendom) 
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# Wages #  
pdata$wage <- pdata$X360*-1 
 
# Calculated manager wage #  
# Labor costs 
# Hired labor 
pdata$hlabor <- ifelse(pdata$X360 < 0, pdata$X360, 0) 
# Tillæg ved ansatte på 15 kr. pr. normtime - ca. tillæg på 25.000 kr. pr. ansat 
pdata$til1 <- ifelse(pdata$norm_t_ejendom > 1665, (pdata$norm_t_ejendom - 1665) * 15, 0) 
# Tillæg maksimalt 450.000 kr. dvs. maksimal driftslederløn på 750.000 kr. 
pdata$til <- ifelse(pdata$til1 > 450000, 450000, pdata$til1)                             
# Ejeren får 300.000 kr.+tillæg for stor farm, dog trækkes anden lønindtægt fra 
pdata$ownermanager <- ifelse(pdata$X7960 < 225000 &  
            pdata$X7960 > 0, 300000 - pdata$X7960, 75000) + pdata$til 
# ægtefællen får maksimalt 300.000 kr. Der antages, at være en ægtefælle, 
# hvis der er børnefamilieydelse, lønindtægt fra ægtefælle 
# eller familiens arbejdskraftbehov overstiger 3000 timer. 
pdata$spouse <- ifelse((pdata$X7962 > 0 | pdata$X7964 > 0 | pdata$norm_t_ejerfam > 3000)  
                       & pdata$X7962 < 300000 & pdata$X7962 >= 0, 300000-pdata$X7962, 0) 
pdata$spouse <- ifelse(pdata$spouse < 0, 0, pdata$spouse) 
# Familiens aflønning består af driftleder + ægtefælle, børn forventes aflønnet 
pdata$famlabor <- pdata$ownermanager + pdata$spouse 
 
pdata$result <- pdata$res_f_fin-pdata$famlabor  
 
# Total wages: other + owner #  
pdata$totalwages <-with(pdata,wage+famlabor) 
 
# Land #  
pdata$land<-with(pdata,X3901+X3911) 
 
# Materials used in the production minus feed expenditures,  
# depretiation, maintenaince, wages, and land taxes #  
 
pdata$materials <- with(pdata, (X230+X235+X240+X245+ 
                                  X275+X280+X310+X315+X320 +X325+X330+X375+X380)*-1) 
# Agricultural assets #  
pdata$assetsprimo<-
with(pdata,X8002+X8006+X8007+X8009+X1540+X8011+X1560+X8014+ 
                          X8015+X8016+X8017+X8018+X8019+X8020+X8021+X8022+X8023) 
 
pdata$assetsultimo<-
with(pdata,X1000+X1008+X1010+X1016+X1018+X1020+X1024+X1026+ 
                     X1028+X1030+X1032+X1034+X1038+X1040+X1042+X1044+X1048+X1050) 
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pdata$assets<-(pdata$assetsprimo+pdata$assetsultimo)/2 
 
#  Maintenance #  
pdata$main <- with(pdata,(X335+X340+X345+X350+X355+X357)*-1) 
 
# Depreciation #  
pdata$dep <-pdata$afsk*-1 
 
# Land value # 
pdata$landvalue<-pdata$X8104 
 
# Residence # 
pdata$residence<-pdata$X8107 
 
# Capital #  
pdata$capital<-with(pdata,((assets-landvalue-residence)*0.05052+dep+main)) 
 
### INEFFICIENCY VARIABLES ###  
# Manager age # 
pdata$managerage <-as.numeric(pdata$X6422) 
 
# Production consultant #  
pdata$consultant<-ifelse((pdata$X7826*-1)>0,1,0) 
 
### Diseases ###  
 
# mastitis per cow #  
pdata$mastitis<-pdata$k114 
 
# hoof and limb diseases per cow #  
pdata$hoofdis<-pdata$k115 
 
# Reproductive disorders  per cow #  
pdata$reprodis<-pdata$k116 
 
# Other disorders  per cow #  
pdata$otherdis<-pdata$k117 
 
 
# Health indicators overall #  
pdata$healthindicators<-with(pdata,mastitis+hoofdis+reprodis+otherdis) 
 
#### Milk quality indicators #### 
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# Cell count #  
pdata$cell<-with(pdata,k110) 
summary(pdata$cell) 
pdata$cell1<-ifelse(pdata$k110<=300,1,0) 
pdata$cell2<-ifelse(pdata$k110>300,1,0) 
 
# Viable count #  
pdata$viable<-with(pdata,k111) 
pdata$viable1<-ifelse(pdata$k111<=30,1,0) 
pdata$viable2<-ifelse(pdata$k111>31,1,0) 
 
# Spore #  
pdata$spore<-with(pdata,k112) 
pdata$spore1<-ifelse(pdata$k112<=400,1,0) 
pdata$spore2<-ifelse(pdata$k112>401,1,0) 
 
### PRODUCTION CHARACTERISTICS ###  
#### Creating dummies ####  
### Type of cow ###  
table(pdata$X5100) 
# Breed = Jersey when X5100 = 3 #  
pdata$jersey<-ifelse(pdata$X5100 == 3,1,0) 
# Breed = Large when X5100 != 3 #  
pdata$large<-ifelse(pdata$X5100<3|pdata$X5100>3,1,0) 
 
# Milking system # 
table(pdata$X5101) 
# Milking system = AMS when X5101 = 3 #  
pdata$AMS<-ifelse(pdata$X5101 == 3,1,0) 
 
# Milking system = Fishbone when X5101 = 4 #  
pdata$fishbone<-ifelse(pdata$X5101 == 4,2,0) 
 
# Milking system = other when not 3 or 4  #  
pdata$othersys<-ifelse(pdata$X5101<3 | pdata$X5101>4,3,0)  
 
# Milking system as categorial variable #  
pdata$milkingsystem<-with(pdata,as.factor(AMS+fishbone+othersys)) 
 
# Organic # 
pdata$organic<-ifelse(pdata$X6410==1,1,0) 
 
# Herd size crontrolled for incoming and outgoing cows during the year # 
pdata$yearcows<-pdata$k97 
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#### Only keeping defined variables #### 
keeps<- c("lbnr","Regnskabsaar","grossmilk","grossmilkshare","grossother", 
          "grosstotal","vetmed","hours","feedexp","ownfeed", 
          "totalwages","land","materials","capital", "managerage","consultant", 
          "mastitis","hoofdis","reprodis","otherdis","cell","viable","spore", 
          "cell1","viable1","spore1", "cell2","viable2","spore2", 
          "milkquality", "healthindicators", 
          "jersey","large","AMS","fishbone","othersys","organic","yearcows", 
          "milkingsystem")  
 
pdata1 <-pdata[ , (names(pdata) %in% keeps)] 
 
#### Summary statistics of variables and number of violations ####  
summary(pdata1$grossmilkshare>=0.66)  
summary(pdata1$grossmilkshare<=1)  
summary(pdata1$yearcows>49)  
summary(pdata1$hours>=1665)  
 
### Excluding those who are not specialised in milk production ###  
pdata11<-subset(pdata1,grossmilkshare>=0.66 & grossmilkshare<=1 & hours>=1665 &  
                  yearcows>49) 
 
### Creating new dataset with zero inpu/output values ### 
summary(pdata1$grossother>0)  
summary(pdata11$vetmed>0)  
summary(pdata11$feedexp>0)  
summary(pdata11$totalwages>0)  
summary(pdata11$land>0)  
summary(pdata11$materials>0)  
summary(pdata11$capital>0)  
summary(pdata11$managerage>=18)  
summary(pdata11$managerage<90)  
 
pdata2<-subset(pdata11, grossother>0 & vetmed>0 & feedexp>0 & totalwages>0 & capital>0 &  
                 materials>0  & land>0 )   
 
### Mangerage should lie between 18 and 90, otherwise NA  ### 
summary(pdata11$managerage>=18)  
summary(pdata11$managerage<90)   
pdata2$managerage[pdata2$managerage<18 | pdata2$managerage>90] <- NA 
 
### Redefining the data used for the estimations, such that NA values are not a problem ###  
pdata20<-pdata2[!is.na(pdata2$cell1),] 
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pdata201<-pdata20[!is.na(pdata20$cell2),] 
pdata21<-pdata201[!is.na(pdata201$viable1),] 
pdata211<-pdata21[!is.na(pdata21$viable2),] 
pdata22<-pdata211[!is.na(pdata211$spore1),]   
pdata221<-pdata211[!is.na(pdata211$spore2),]  
pdata23<-pdata221[!is.na(pdata221$managerage),] 
 
### Excluding those with data for less than 3 years ### 
tbl <- table(pdata23$lbnr) 
pdata33 <- droplevels(pdata23[pdata23$lbnr %in% names(tbl)[tbl >= 3],,drop=FALSE]) 
 
### STEP 1 ###  
# Testing the data for the farms removed against 
 
#### Health indicators t-test #### 
# mastitis per cow 
t.test(pdata23$mastitis,pdata33$mastitis) 
# hoof and limb diseases per cow 
t.test(pdata23$hoofdis,pdata33$hoofdis) 
# Reproductive disorders  per cow 
t.test(pdata23$reprodis,pdata33$reprodis) 
# Other disorders  per cow 
t.test(pdata23$otherdis,pdata33$otherdis) 
 
#### Milk quality indicators: shares #### 
# Cell count category #  
table(pdata23$cell1==1) 
table(pdata33$cell1==1) 
# Viable count category #  
table(pdata23$viable1==1) 
table(pdata33$viable1==1) 
# Spore count category #  
table(pdata23$spore1==1) 
table(pdata33$spore1==1) 
 
### Type of cow: shares ### 
table(pdata23$jersey==1) 
table(pdata33$jersey==1) 
 
### Milking system: shares ###  
# Milking system = AMS #  
table(pdata23$AMS==1) 
table(pdata33$AMS==1) 
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# Milking system = fishbone #  
table(pdata23$fishbone==2) 
table(pdata33$fishbone==2) 
 
# Milking system = othersys #  
table(pdata23$othersys==3) 
table(pdata33$othersys==3) 
 
### Organic:shares ###  
table(pdata23$organic==1) 
table(pdata33$organic==1) 
 
#### Manager age: t-test #### 
t.test(pdata23$managerage,pdata33$managerage) 
 
### Production consultant: shares ###  
table(pdata23$consultant==1) 
table(pdata33$consultant==1) 
 
### STEP 2 ###  
# The first thing here is to deflate DKK-values using input and output specific prices  
# This will allow us to compare performance over time  
# Read PriceIndex.csv 
pricedata <- read.csv("PriceIndex.csv", sep=";", dec = ".") 
summary(pricedata)  
# substract 2010 such that Year variable will have values 0:5 
pricedata$Regnskabsaar <- pricedata$Regnskabsaar - 2010 
pdata33$Year <- as.numeric(pdata33$Regnskabsaar)  
 
# deflating nominal values of selected variable  
# to real values with the base year = 2010  
# First, create empty variable, e.g. "output_2010"  
 
### DEFLATING THE OUTPUTS ### 
### MILK OUTPUT ###  
pdata33$grossmilk_2010level <- NA 
 
# Deflate the variable (i.e. express it in constant, 2010, prices) 
# For variable_2010 in year i == 1 in data assing the value of this  
# variable in year i == 1 devided by the CPI in i == 1 from PriceInd 
# do it for each i in 1:5 using following "for loop": 
# for each i in 1:5 do the following: 
for( i in 1:5 ) { # for each i in 1:5 do the following: 
  pdata33$grossmilk_2010level[ pdata33$Year == i ] <-  
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    pdata33$grossmilk[ pdata33$Year == i ] /  
    pricedata$indexmilk[ pricedata$Regnskabsaar ==  i  ] 
} 
 
### OTHER OUTPUT ###  
pdata33$grossother_2010level <- NA 
for( i in 1:5 ) { # for each i in 1:5 do the following: 
  pdata33$grossother_2010level[ pdata33$Year == i ] <-  
    pdata33$grossother[ pdata33$Year == i ] /  
    pricedata$indexother[ pricedata$Regnskabsaar ==  i  ] 
} 
 
### DEFLATING THE INPUTS  ###  
### FEEDEXP ###  
pdata33$feedexp_2010level <- NA 
for( i in 1:5 ) { # for each i in 1:5 do the following: 
  pdata33$feedexp_2010level[ pdata33$Year == i ] <-  
    pdata33$feedexp[ pdata33$Year == i ] /  
    pricedata$indexfeed[ pricedata$Regnskabsaar ==  i  ] 
} 
 
### VETMED ###  
pdata33$vetmed_2010level <- NA 
for( i in 1:5 ) { # for each i in 1:5 do the following: 
  pdata33$vetmed_2010level[ pdata33$Year == i ] <-  
    pdata33$vetmed[ pdata33$Year == i ] /  
    pricedata$indexvetmed[ pricedata$Regnskabsaar ==  i  ] 
} 
 
### WAGES ###  
pdata33$totalwages_2010level <- NA 
for( i in 1:5 ) { # for each i in 1:5 do the following: 
  pdata33$totalwages_2010level[ pdata33$Year == i ] <-  
    pdata33$totalwages[ pdata33$Year == i ] /  
    pricedata$indexwages[ pricedata$Regnskabsaar ==  i  ] 
} 
 
### MATERIALS ###  
pdata33$materials_2010level <- NA 
for( i in 1:5 ) { # for each i in 1:5 do the following: 
  pdata33$materials_2010level[ pdata33$Year == i ] <-  
    pdata33$materials[ pdata33$Year == i ] /  
    pricedata$indexmaterials[ pricedata$Regnskabsaar ==  i  ] 
} 
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#### Now we make a correlation analysis #### 
# we test the correlation bewteen the gross margin (GM) from milk output per cow # 
# we need here to include expenditures to own feed, and thus create a new dataset #  
# just for the correlation and linear regression analysis #  
pdata34<-subset(pdata33, ownfeed>0) 
 
pdata34$ownfeed_2010level <- NA 
for( i in 1:5 ) { # for each i in 1:5 do the following: 
  pdata34$ownfeed_2010level[ pdata34$Year == i ] <-  
    pdata34$ownfeed[ pdata34$Year == i ] /  
    pricedata$indexfeed[ pricedata$Regnskabsaar ==  i  ] 
} 
 
dim(pdata34) 
pdata34$grossmarginmilk<-with(pdata34,grossmilk_2010level- 
              (feedexp_2010level+ownfeed_2010level+vetmed_2010level)) 
 
### The gross margin from milk per cow ### 
pdata34$grossmarginpercow<-(pdata34$grossmarginmilk/pdata34$yearcows) 
 
### The influence of the health indicators has on the GM per cow  ###  
 
# mastitis per cow 
plot(pdata34$mastitis,pdata34$grossmarginpercow) 
abline(lm(pdata34$grossmarginpercow~pdata34$mastitis)) 
cor.test(pdata34$mastitis,pdata34$grossmarginpercow, 
         use="pairwise.complete.obs",method="pearson") 
 
# hoof and limb disorders per cow 
plot(pdata34$hoofdis,pdata34$grossmarginpercow) 
abline(lm(pdata34$grossmarginpercow~pdata34$hoofdis)) 
cor.test(pdata34$hoofdis,pdata34$grossmarginpercow, 
         use="pairwise.complete.obs",method="pearson") 
 
# Reproductive disorders  per cow 
plot(pdata34$reprodis,pdata34$grossmarginpercow) 
abline(lm(pdata34$grossmarginpercow~pdata34$reprodis)) 
cor.test(pdata34$reprodis,pdata34$grossmarginpercow, 
         use="pairwise.complete.obs",method="pearson") 
 
# Other disorders  per cow 
plot(pdata34$otherdis,pdata34$grossmarginpercow) 
abline(lm(pdata34$grossmarginpercow~pdata34$otherdis)) 
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cor.test(pdata34$otherdis,pdata34$grossmarginpercow, 
         use="pairwise.complete.obs",method="pearson") 
### Milk quality indicators ### 
# par(mfrow=c(1,3)) 
 
### Cell counts ### 
boxplot(pdata34$grossmarginpercow,pdata34$cell1,names=c("Cell 1","Cell 2")) 
cor.test(pdata34$cell1,pdata34$grossmarginpercow, 
         use="pairwise.complete.obs",method="pearson") 
 
### Viable counts ### 
boxplot(pdata34$grossmarginpercow,pdata34$viable1,names=c("Viable 1","Viable 2")) 
cor.test(pdata34$viable1,pdata34$grossmarginpercow, 
         use="pairwise.complete.obs",method="pearson") 
 
### Spore counts ### 
boxplot(pdata34$grossmarginpercow,pdata34$spore1==0,names=c("Spore 1","Spore 2")) 
cor.test(pdata34$spore1,pdata34$grossmarginpercow, 
         use="pairwise.complete.obs",method="pearson") 
 
### Breed ###  
boxplot(pdata34$grossmarginpercow~pdata34$jersey,names=c("Jersey","Large breed")) 
cor.test(pdata34$grossmarginpercow,pdata34$jersey, 
         use="pairwise.complete.obs",method="pearson") 
 
### Milking system ### 
boxplot(pdata34$grossmarginpercow~pdata34$milkingsystem,names=c("AMS","Fishbone","Ot
her")) 
title("Gross margin per cow and the type of milking system") 
cor.test(pdata34$grossmarginpercow,pdata34$AMS, 
         use="pairwise.complete.obs",method="pearson") 
cor.test(pdata34$grossmarginpercow,pdata34$fishbone, 
         use="pairwise.complete.obs",method="pearson") 
cor.test(pdata34$grossmarginpercow,pdata34$othersys, 
         use="pairwise.complete.obs",method="pearson") 
 
### Organic ###  
boxplot(pdata34$grossmarginpercow~pdata34$organic==0,names=c("Organic","Conventional")
) 
cor.test(pdata34$grossmarginpercow,pdata34$organic, 
         use="pairwise.complete.obs",method="pearson") 
 
### Manager age ###  
cor.test(pdata34$grossmarginpercow,pdata34$managerage, 
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         use="pairwise.complete.obs",method="pearson") 
 
### Consultant ###  
cor.test(pdata34$grossmarginpercow,pdata34$consultant, 
         use="pairwise.complete.obs",method="pearson") 
 
### STEP 3 ###  
# Estimating the GM per cow using Pooled OLS #  
# The general model #  
OLS<-plm(grossmarginpercow~Regnskabsaar 
         + mastitis 
         + hoofdis 
         + reprodis 
         + otherdis 
         + cell1 
         + viable1  
         + spore1  
         + jersey  
         + organic 
         + milkingsystem 
         + consultant 
         + managerage 
         + I(managerage^2) 
         ,model="pooling",data=pdata34) 
summary(OLS) 
 
### STEP 4 ###   
### DISTANCE FUNCTIONS ###  
library(foreign)  
library(frontier)  
library(AER)  
library(plm)  
library(gmp) 
library(Rmpfr) 
 
# In some model specifications, it is an advantage to use mean-scaled quantities.  
# Therefore, we create new variables with mean-scaled input and output quantities: 
# ouptut quantities 
pdata33$grossmilkMS<-pdata33$grossmilk_2010level/mean(pdata33$grossmilk_2010level) 
pdata33$grossotherMS<-pdata33$grossother_2010level/mean(pdata33$grossother_2010level) 
# input quantities 
pdata33$vetmedMS<-pdata33$vetmed_2010level/mean(pdata33$vetmed_2010level) 
pdata33$hoursMS<-pdata33$hours/mean(pdata33$hours) 
pdata33$feedexpMS<-pdata33$feedexp_2010level/mean(pdata33$feedexp_2010level) 
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pdata33$totalwagesMS<-pdata33$totalwages_2010level/mean(pdata33$totalwages_2010level) 
pdata33$landMS<-pdata33$land/mean(pdata33$land) 
pdata33$materialsMS<-pdata33$materials_2010level/mean(pdata33$materials_2010level) 
pdata33$capitalMS<-pdata33$capital/mean(pdata33$capital) 
 
# set arguments for all estimations using  sfa() 
sfaSearchStep <- 1e-6 
sfaSearchTol <- 1e-11 
sfaTol <- 1e-11 
 
################################### 
#### INPUT DISTANCE FUNCTION ### 
################################### 
 
#### Cobb-Douglas: General model ####  
##################################### 
CDidfunres<-sfa( -log(materialsMS) ~ log(grossmilkMS)  
                 + log(grossotherMS) 
                 + log( feedexpMS/materialsMS )  
                 + log( vetmedMS/materialsMS ) 
                 + log(totalwagesMS/materialsMS)   
                 + log(landMS/materialsMS) 
                 + log(capitalMS/materialsMS)   
                 + Regnskabsaar 
                 + milkingsystem 
                 + jersey 
                 + organic  
                 |   
                 + mastitis  
                 + hoofdis  
                 + reprodis  
                 + otherdis   
                 + cell1 
                 + viable1 
                 + spore1 
                 + consultant 
                 + managerage  
                 ,data=pdata33, ineffDecrease = TRUE, 
                 timeEffect = TRUE, 
                 searchStep = sfaSearchStep, searchTol = sfaSearchTol, tol = sfaTol ) 
summary(CDidfunres, extraPar = TRUE) 
 
### Translog: general model  ###  
###################################### 
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TLidfunres <- sfa(-log(materialsMS) ~ log(grossmilkMS)   
                            + log (grossotherMS) 
                   
                            + I( 0.5 * log( grossmilkMS )^2 ) 
                            + I( 0.5 * log( grossotherMS )^2 ) 
                            + I( log( grossmilkMS) * log ( grossotherMS ) ) 
                   
                            + log (feedexpMS/materialsMS)  
                            + log( vetmedMS/materialsMS ) 
                            + log(totalwagesMS/materialsMS)  
                            + log(landMS/materialsMS) 
                            + log(capitalMS/materialsMS) 
                             
                            + I(0.5 * log(feedexpMS/materialsMS)^2) 
                            + I(0.5 * log(vetmedMS/materialsMS)^2) 
                            + I(0.5 * log(totalwagesMS/materialsMS)^2) 
                            + I(0.5 * log(landMS/materialsMS)^2) 
                            + I(0.5 * log(capitalMS/materialsMS)^2) 
                          
                            + I(log(feedexpMS/materialsMS) * log(vetmedMS/materialsMS)) 
                            + I(log(feedexpMS/materialsMS) * log(totalwagesMS/materialsMS)) 
                            + I(log(feedexpMS/materialsMS) * log(landMS/materialsMS)) 
                            + I(log(feedexpMS/materialsMS) * log(capitalMS/materialsMS)) 
                            + I(log(vetmedMS/materialsMS) * log(totalwagesMS/materialsMS)) 
                            + I(log(vetmedMS/materialsMS) * log(landMS/materialsMS)) 
                            + I(log(vetmedMS/materialsMS) * log(capitalMS/materialsMS)) 
                            + I(log(totalwagesMS/materialsMS) * log(landMS/materialsMS)) 
                            + I(log(totalwagesMS/materialsMS) * log(capitalMS/materialsMS)) 
                            + I(log(landMS/materialsMS) * log(capitalMS/materialsMS)) 
                   
                            + I(log(feedexpMS/materialsMS) * log( grossmilkMS )) 
                            + I(log(feedexpMS/materialsMS) * log( grossotherMS )) 
                            + I(log(vetmedMS/materialsMS) * log( grossmilkMS )) 
                            + I(log(vetmedMS/materialsMS) * log( grossotherMS )) 
                            + I(log(totalwagesMS/materialsMS) * log( grossmilkMS )) 
                            + I(log(totalwagesMS/materialsMS) * log( grossotherMS )) 
                            + I(log(landMS/materialsMS) * log( grossmilkMS )) 
                            + I(log(landMS/materialsMS) * log( grossotherMS )) 
                            + I(log(capitalMS/materialsMS) * log( grossmilkMS )) 
                            + I(log(capitalMS/materialsMS) * log( grossotherMS )) 
                            + Regnskabsaar 
                            + milkingsystem 
                            + jersey 
                            + organic  
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                            |   
                            + mastitis  
                            + hoofdis  
                            + reprodis  
                            + otherdis   
                            + cell1  
                            + viable1 
                            + spore1 
                            + managerage 
                            + consultant 
                            ,data = pdata33 
                           , ineffDecrease = TRUE ,timeEffect = TRUE 
                            ,searchStep = sfaSearchStep, searchTol = sfaSearchTol, tol = sfaTol) 
 
lrtest(TLidfunres)  
 
### Translog: restricted model with diseases ###  
############################################### 
TLidfres1 <- sfa(-log(materialsMS) ~ log(grossmilkMS)   
                 + log (grossotherMS) 
                  
                 + I( 0.5 * log( grossmilkMS )^2 ) 
                 + I( 0.5 * log( grossotherMS )^2 ) 
                 + I( log( grossmilkMS) * log ( grossotherMS ) ) 
                  
                 + log (feedexpMS/materialsMS)  
                 + log( vetmedMS/materialsMS ) 
                 + log(totalwagesMS/materialsMS)  
                 + log(landMS/materialsMS) 
                 + log(capitalMS/materialsMS) 
                  
                 + I(0.5 * log(feedexpMS/materialsMS)^2) 
                 + I(0.5 * log(vetmedMS/materialsMS)^2) 
                 + I(0.5 * log(totalwagesMS/materialsMS)^2) 
                 + I(0.5 * log(landMS/materialsMS)^2) 
                 + I(0.5 * log(capitalMS/materialsMS)^2) 
                  
                 + I(log(feedexpMS/materialsMS) * log(vetmedMS/materialsMS)) 
                 + I(log(feedexpMS/materialsMS) * log(totalwagesMS/materialsMS)) 
                 + I(log(feedexpMS/materialsMS) * log(landMS/materialsMS)) 
                 + I(log(feedexpMS/materialsMS) * log(capitalMS/materialsMS)) 
                 + I(log(vetmedMS/materialsMS) * log(totalwagesMS/materialsMS)) 
                 + I(log(vetmedMS/materialsMS) * log(landMS/materialsMS)) 
                 + I(log(vetmedMS/materialsMS) * log(capitalMS/materialsMS)) 
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                 + I(log(totalwagesMS/materialsMS) * log(landMS/materialsMS)) 
                 + I(log(totalwagesMS/materialsMS) * log(capitalMS/materialsMS)) 
                 + I(log(landMS/materialsMS) * log(capitalMS/materialsMS)) 
                  
                 + I(log(feedexpMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(feedexpMS/materialsMS) * log( grossotherMS )) 
                 + I(log(vetmedMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(vetmedMS/materialsMS) * log( grossotherMS )) 
                 + I(log(totalwagesMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(totalwagesMS/materialsMS) * log( grossotherMS )) 
                 + I(log(landMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(landMS/materialsMS) * log( grossotherMS )) 
                 + I(log(capitalMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(capitalMS/materialsMS) * log( grossotherMS )) 
                 + Regnskabsaar 
                 + milkingsystem 
                 + jersey 
                 + organic  
                  |   
                  + mastitis  
                  + hoofdis  
                  + reprodis  
                  + otherdis 
                  + managerage 
                  + consultant 
                  ,data = pdata33 ,searchStep = sfaSearchStep, searchTol = sfaSearchTol, tol = sfaTol 
                  ,ineffDecrease = TRUE ,timeEffect = TRUE ) 
lrtest(TLidfres1) 
lrtest(TLidfres1,TLidfunres) 
 
### Translog: restricted model with milk quality ###  
################################################### 
TLidfres2 <- sfa(-log(materialsMS) ~ log(grossmilkMS)   
                 + log (grossotherMS) 
                  
                 + I( 0.5 * log( grossmilkMS )^2 ) 
                 + I( 0.5 * log( grossotherMS )^2 ) 
                 + I( log( grossmilkMS) * log ( grossotherMS ) ) 
                  
                 + log (feedexpMS/materialsMS)  
                 + log( vetmedMS/materialsMS ) 
                 + log(totalwagesMS/materialsMS)  
                 + log(landMS/materialsMS) 
                 + log(capitalMS/materialsMS) 
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                 + I(0.5 * log(feedexpMS/materialsMS)^2) 
                 + I(0.5 * log(vetmedMS/materialsMS)^2) 
                 + I(0.5 * log(totalwagesMS/materialsMS)^2) 
                 + I(0.5 * log(landMS/materialsMS)^2) 
                 + I(0.5 * log(capitalMS/materialsMS)^2) 
                  
                 + I(log(feedexpMS/materialsMS) * log(vetmedMS/materialsMS)) 
                 + I(log(feedexpMS/materialsMS) * log(totalwagesMS/materialsMS)) 
                 + I(log(feedexpMS/materialsMS) * log(landMS/materialsMS)) 
                 + I(log(feedexpMS/materialsMS) * log(capitalMS/materialsMS)) 
                 + I(log(vetmedMS/materialsMS) * log(totalwagesMS/materialsMS)) 
                 + I(log(vetmedMS/materialsMS) * log(landMS/materialsMS)) 
                 + I(log(vetmedMS/materialsMS) * log(capitalMS/materialsMS)) 
                 + I(log(totalwagesMS/materialsMS) * log(landMS/materialsMS)) 
                 + I(log(totalwagesMS/materialsMS) * log(capitalMS/materialsMS)) 
                 + I(log(landMS/materialsMS) * log(capitalMS/materialsMS)) 
                  
                 + I(log(feedexpMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(feedexpMS/materialsMS) * log( grossotherMS )) 
                 + I(log(vetmedMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(vetmedMS/materialsMS) * log( grossotherMS )) 
                 + I(log(totalwagesMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(totalwagesMS/materialsMS) * log( grossotherMS )) 
                 + I(log(landMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(landMS/materialsMS) * log( grossotherMS )) 
                 + I(log(capitalMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(capitalMS/materialsMS) * log( grossotherMS )) 
                 + Regnskabsaar 
                 + milkingsystem 
                 + jersey 
                 + organic  
                  |   
                  + cell1 
                  + viable1 
                  + spore1 
                  + managerage 
                  + consultant 
                  ,data = pdata33 
                  , ineffDecrease = TRUE ,timeEffect = TRUE 
                  ,searchStep = sfaSearchStep, searchTol = sfaSearchTol, tol = sfaTol) 
lrtest(TLidfres2) 
lrtest(TLidfunres,TLidfres2) 
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### Translog: restricted model without managerage and consultant ### 
#################################################################### 
TLidfres3 <- sfa(-log(materialsMS) ~ log(grossmilkMS)   
                 + log (grossotherMS) 
                  
                 + I( 0.5 * log( grossmilkMS )^2 ) 
                 + I( 0.5 * log( grossotherMS )^2 ) 
                 + I( log( grossmilkMS) * log ( grossotherMS ) ) 
                  
                 + log (feedexpMS/materialsMS)  
                 + log( vetmedMS/materialsMS ) 
                 + log(totalwagesMS/materialsMS)  
                 + log(landMS/materialsMS) 
                 + log(capitalMS/materialsMS) 
                  
                 + I(0.5 * log(feedexpMS/materialsMS)^2) 
                 + I(0.5 * log(vetmedMS/materialsMS)^2) 
                 + I(0.5 * log(totalwagesMS/materialsMS)^2) 
                 + I(0.5 * log(landMS/materialsMS)^2) 
                 + I(0.5 * log(capitalMS/materialsMS)^2) 
                  
                 + I(log(feedexpMS/materialsMS) * log(vetmedMS/materialsMS)) 
                 + I(log(feedexpMS/materialsMS) * log(totalwagesMS/materialsMS)) 
                 + I(log(feedexpMS/materialsMS) * log(landMS/materialsMS)) 
                 + I(log(feedexpMS/materialsMS) * log(capitalMS/materialsMS)) 
                 + I(log(vetmedMS/materialsMS) * log(totalwagesMS/materialsMS)) 
                 + I(log(vetmedMS/materialsMS) * log(landMS/materialsMS)) 
                 + I(log(vetmedMS/materialsMS) * log(capitalMS/materialsMS)) 
                 + I(log(totalwagesMS/materialsMS) * log(landMS/materialsMS)) 
                 + I(log(totalwagesMS/materialsMS) * log(capitalMS/materialsMS)) 
                 + I(log(landMS/materialsMS) * log(capitalMS/materialsMS)) 
                  
                 + I(log(feedexpMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(feedexpMS/materialsMS) * log( grossotherMS )) 
                 + I(log(vetmedMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(vetmedMS/materialsMS) * log( grossotherMS )) 
                 + I(log(totalwagesMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(totalwagesMS/materialsMS) * log( grossotherMS )) 
                 + I(log(landMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(landMS/materialsMS) * log( grossotherMS )) 
                 + I(log(capitalMS/materialsMS) * log( grossmilkMS )) 
                 + I(log(capitalMS/materialsMS) * log( grossotherMS )) 
                 + Regnskabsaar 
                 + milkingsystem 
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                 + jersey 
                 + organic  
                 |   
                 + mastitis  
                 + hoofdis  
                 + reprodis  
                 + otherdis   
                 + cell1  
                 + viable1 
                 + spore1 
                 ,data = pdata33 
                 , ineffDecrease = TRUE ,timeEffect = TRUE 
                 ,searchStep = sfaSearchStep, searchTol = sfaSearchTol, tol = sfaTol) 
summary(TLidfres3) 
lrtest(TLidfres3) 
lrtest(TLidfunres,TLidfres3) 
 
### Choosing the restricted model: TLidfres3  ###  
TLidf <- TLidfres3 
summary(TLidf) 
### Skeewness  test ###  
library(moments) 
skewness(residuals(TLidf,asInData = TRUE)) 
 
### Coefficients of TLidf ###  
 
amilk <- coef( TLidf )["log(grossmilkMS)"] 
aother <- coef( TLidf )["log(grossotherMS)"] 
amilkmilk <- - coef( TLidf )["I(0.5 * log(grossmilkMS)^2)"] 
aotherother <- coef( TLidf )["I(0.5 * log(grossotherMS)^2)"] 
amilkother <- aothermilk <- coef( TLidf )["I(log(grossmilkMS) * log(grossotherMS))"] 
 
bfeed <- coef(TLidf)["log(feedexpMS/materialsMS)"] 
bvet <- coef(TLidf)["log(vetmedMS/materialsMS)"] 
bwages <- coef(TLidf)["log(totalwagesMS/materialsMS)"] 
bland <- coef(TLidf)["log(landMS/materialsMS)"] 
bcap <- coef(TLidf)["log(capitalMS/materialsMS)"] 
bmat <- 1-(bfeed+bvet+bwages+bland+bcap) 
 
bfeedfeed <- coef(TLidf)["I(0.5 * log(feedexpMS/materialsMS)^2)"] 
bvetvet <- coef(TLidf)["I(0.5 * log(vetmedMS/materialsMS)^2)"] 
bwageswages <- coef(TLidf)["I(0.5 * log(totalwagesMS/materialsMS)^2)"] 
blandland <-coef(TLidf)["I(0.5 * log(landMS/materialsMS)^2)"] 
bcapcap <- coef(TLidf)["I(0.5 * log(capitalMS/materialsMS)^2)"] 
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bfeedvet <- bvetfeed <-coef(TLidf)["I(log(feedexpMS/materialsMS) * 
log(vetmedMS/materialsMS))"] 
bfeedwages <- bwagesfeed <- coef(TLidf)["I(log(feedexpMS/materialsMS) * 
log(totalwagesMS/materialsMS))"] 
bfeedland <- blandfeed <- coef(TLidf)["I(log(feedexpMS/materialsMS) * 
log(landMS/materialsMS))"] 
bfeedcap <- bcapfeed <- coef(TLidf)["I(log(feedexpMS/materialsMS) * 
log(capitalMS/materialsMS))"] 
bvetwages <- bwagesvet <-coef(TLidf)["I(log(vetmedMS/materialsMS) * 
log(totalwagesMS/materialsMS))"] 
bvetland <- blandvet <- coef(TLidf)["I(log(vetmedMS/materialsMS) * 
log(landMS/materialsMS))"] 
bvetcap <- bcapvet <- coef(TLidf)["I(log(vetmedMS/materialsMS) * 
log(capitalMS/materialsMS))"] 
bwagesland <- blandwages <-coef(TLidf)["I(log(totalwagesMS/materialsMS) * 
log(landMS/materialsMS))"] 
bwagescap <- bcapwages <-coef(TLidf)["I(log(totalwagesMS/materialsMS) * 
log(capitalMS/materialsMS))"] 
blandcap <- bcapland <-coef(TLidf)["I(log(landMS/materialsMS) * 
log(capitalMS/materialsMS))"] 
 
bfeedmat <- bmatfeed <- -(bfeedfeed + bfeedvet + bfeedwages + bfeedland + bfeedcap) 
bvetmat <- bmatvet <- - (bvetvet + bvetfeed + bvetwages + bvetland + bvetcap ) 
bwagesmat <- bmatwages <- -(bwageswages + bwagesfeed + bwagesvet + bwagesland + 
bwagescap) 
blandmat <- bmatland <- - (blandland + blandfeed + blandvet + blandwages + blandcap) 
bcapmat <- bmatcap <- - (bcapcap + bcapfeed + bcapvet + bcapwages + bcapland) 
bmatmat <- -(bmatfeed + bmatvet + bmatwages + bmatland + bmatcap) 
 
zfeedmilk <- coef(TLidf)["I(log(feedexpMS/materialsMS) * log(grossmilkMS))"] 
zfeedother <- coef(TLidf)["I(log(feedexpMS/materialsMS) * log(grossotherMS))"] 
zvetmilk <- coef(TLidf)["I(log(vetmedMS/materialsMS) * log(grossmilkMS))"] 
zvetother <- coef(TLidf)["I(log(vetmedMS/materialsMS) * log(grossotherMS))"] 
zwagesmilk <- coef(TLidf)["I(log(totalwagesMS/materialsMS) * log(grossmilkMS))"] 
zwagesother <- coef(TLidf)["I(log(totalwagesMS/materialsMS) * log(grossotherMS))"] 
zlandmilk <- coef(TLidf)["I(log(landMS/materialsMS) * log(grossmilkMS))"] 
zlandother <- coef(TLidf)["I(log(landMS/materialsMS) * log(grossotherMS))"] 
zcapmilk <- coef(TLidf)["I(log(capitalMS/materialsMS) * log(grossmilkMS))"] 
zcapother <- coef(TLidf)["I(log(capitalMS/materialsMS) * log(grossotherMS))"] 
zmatmilk <- -( zfeedmilk + zvetmilk + zwagesmilk + zlandmilk + zcapmilk  ) 
zmatother <- -(zfeedother + zvetother + zwagesother + zlandother + zcapother ) 
 
### Input elasticities ###  
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### feed ###  
pdata33$efeedTLidf <- with(pdata33, bfeed  
+ bfeedfeed * I(log(feedexpMS)) 
+ bfeedvet * I(log(vetmedMS)) 
+ bfeedwages * I(log(totalwagesMS)) 
+ bfeedland * I(log(landMS)) 
+ bfeedcap* I(log(capitalMS)) 
+ bfeedmat * I(log(materialsMS)) 
+ I(zfeedmilk * log(grossmilkMS)) 
+ I(zfeedother * log(grossotherMS)))  
mean(pdata33$efeedTLidf) 
sd(pdata33$efeedTLidf) 
### vet ###  
pdata33$evetTLidf <- with(pdata33, bvet  
+ bvetvet * I(log(vetmedMS)) 
+ bvetwages * I(log(totalwagesMS)) 
+ bvetfeed * I(log(feedexpMS)) 
+ bvetland * I(log(landMS)) 
+ bvetcap* I(log(capitalMS)) 
+ bvetmat * I(log(materialsMS)) 
+ I(zvetmilk * log(grossmilkMS)) 
+ I(zvetother * log(grossotherMS)))  
summary(pdata33$evetTLidf) 
mean(pdata33$evetTLidf) 
sd(pdata33$evetTLidf) 
### totalwages ###  
pdata33$ewagesTLidf <- with(pdata33, bwages  
+ bwageswages * I(log(totalwagesMS)) 
+ bwagesvet * I(log(vetmedMS)) 
+ bwagesfeed * I(log(feedexpMS)) 
+ bwagesland * I(log(landMS)) 
+ bwagescap* I(log(capitalMS)) 
+ bwagesmat * I(log(materialsMS)) 
+ I(zwagesmilk * log(grossmilkMS)) 
+ I(zwagesother * log(grossotherMS)))             
mean(pdata33$ewagesTLidf) 
sd(pdata33$ewagesTLidf) 
### land ###  
pdata33$elandTLidf <- with(pdata33, bland  
+ blandland * I(log(landMS)) 
+ blandvet * I(log(vetmedMS)) 
+ blandfeed * I(log(feedexpMS)) 
+ blandwages * I(log(totalwagesMS)) 
+ blandcap* I(log(capitalMS)) 
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+ blandmat * I(log(materialsMS)) 
+ I(zlandmilk * log(grossmilkMS)) 
+ I(zlandother * log(grossotherMS)))           
mean(pdata33$elandTLidf) 
sd(pdata33$elandTLidf) 
### capital ###  
pdata33$ecapTLidf <- with(pdata33, bcap  
+ bcapcap * I(log(capitalMS)) 
+ bcapfeed * I(log(feedexpMS)) 
+ bcapvet * I(log(vetmedMS)) 
+ bcapwages * I(log(totalwagesMS)) 
+ bcapland * I(log(landMS)) 
+ bcapmat * I(log(materialsMS)) 
+ I(zcapmilk * log(grossmilkMS)) 
+ I(zcapother * log(grossotherMS))) 
mean(pdata33$ecapTLidf) 
sd(pdata33$ecapTLidf) 
### materials ###  
pdata33$ematTLidf <- with(pdata33, bmat  
+ bmatmat * I(log(materialsMS)) 
+ bmatfeed * I(log(feedexpMS)) 
+ bmatvet * I(log(vetmedMS)) 
+ bmatwages * I(log(totalwagesMS)) 
+ bmatland * I(log(landMS)) 
+ bmatcap * I(log(capitalMS)) 
+ I(zmatmilk * log(grossmilkMS)) 
+ I(zmatother * log(grossotherMS))) 
mean(pdata33$ematTLidf) 
sd(pdata33$ematTLidf) 
### Output elasticities ###  
### gross milk ###  
pdata33$emilkTLidf <- with(pdata33, amilk  
+ amilkother * I(log(grossotherMS)) 
+ zfeedmilk * I(log(feedexpMS)) 
+ zvetmilk * I(log(vetmedMS)) 
+ zwagesmilk * I(log(totalwagesMS)) 
+ zlandmilk * I(log(landMS)) 
+ zcapmilk * I(log(capitalMS)) 
+ zmatmilk * I(log(materialsMS))) 
mean(pdata33$emilkTLidf) 
sd(pdata33$emilkTLidf) 
### gross other ###  
pdata33$eotherTLidf <- with(pdata33, aother   
+ aothermilk * I(log(grossmilkMS)) 
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+ zfeedother * I(log(feedexpMS)) 
+ zvetother * I(log(vetmedMS)) 
+ zwagesother * I(log(totalwagesMS)) 
+ zlandother * I(log(landMS)) 
+ zcapother * I(log(capitalMS)) 
+ zmatother * I(log(materialsMS))) 
mean(pdata33$eotherTLidf) 
sd(pdata33$eotherTLidf) 
 
### Test the properties ###  
###################### 
 
### summary statistics of distance elasticities ###  
summary(pdata33[,c( "efeedTLidf", "evetTLidf","ewagesTLidf","elandTLidf", 
                    "ecapTLidf","ematTLidf","emilkTLidf","eotherTLidf")]) 
 
### check if distance elasticities of the inputs sum up to one ###  
range(pdata33$efeedTLidf + pdata33$evetTLidf+pdata33$ewagesTLidf+pdata33$elandTLidf 
      +pdata33$ecapTLidf + pdata33$ematTLidf) 
 
### Elasticity of scale ###  
pdata33$eScaleTLidf <- (-(pdata33$eotherTLidf + pdata33$emilkTLidf))^(-1) 
summary(pdata33$eScaleTLidf) 
sd(pdata33$eScaleTLidf) 
sum( pdata33$eScaleTLidf> 2 | pdata33$eScaleTLidf < 0.5 ) 
 
# Monotonicity in input and output quantities. 
# Di(x,y) is non-decreasing in x if its first order derivatives with  
# respect to input quantities are non-negative  
 
sum(!pdata33$efeedTLidf >= 0) 
sum(!pdata33$evetTLidf  >= 0) 
sum(!pdata33$ewagesTLidf >= 0) 
sum(!pdata33$elandTLidf >= 0) 
sum(!pdata33$ecapTLidf  >= 0) 
sum(!pdata33$ematTLidf >= 0) 
 
pdata33$monoTLidf<-with(pdata33,efeedTLidf >= 0 & evetTLidf  >= 0 & ewagesTLidf >= 0 
                             & elandTLidf >= 0 & ecapTLidf  >= 0 & ematTLidf >= 0) 
 
### number that violates monotonicity assumption (input) ###  
sum( pdata33$monoTLidf )  
sum( !pdata33$monoTLidf )  
sum( pdata33$monoTLidf )/(sum( !pdata33$monoTLidf ) +sum(pdata33$monoTLidf))  
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# Di(x,y) is non-increasing in y if its first order derivatives with respect  
# to input quantities are non-positive. 
 
sum(!pdata33$emilkTLidf <= 0) 
sum(!pdata33$eotherTLidf  <= 0) 
 
### number that violates monotonicity assumption (output) ### 
pdata33$monooutTLidf<-with(pdata33,emilkTLidf <= 0 & eotherTLidf  <= 0) 
sum( pdata33$monooutTLidf )  
sum( !pdata33$monooutTLidf )  
sum( pdata33$monooutTLidf)/(sum( !pdata33$monooutTLidf ) +sum(pdata33$monooutTLidf))  
 
# We can check if estimated Translog input distance is concave in input quantities (x)  
# and quasiconcave in output quantities (y) at the frontier. 
 
### Quasi-concave in outputs ### 
# first-order partial derivatives wrt outputs (with input distance measure = 1 ) 
pdata33$fmilkmilk <- amilk * (amilk-1) * 1 / pdata33$grossmilkMS^2 
pdata33$fmilkother <- amilk * aother * 1 / (pdata33$grossmilkMS * pdata33$grossotherMS) 
pdata33$fotherother <- aother * (aother-1) * 1 / pdata33$grossotherMS^2 
 
# The following code creates a three-dimensional array with the Hessian matrices  
# at all observations stacked upon each other: 
bhm <- matrix( 0, nrow = 2, ncol = 2 ) 
bhm[ 1, 1 ] <- pdata33$fmilkmilk [1] 
bhm[ 1, 2 ] <- bhm[ 2, 1 ] <- pdata33$fmilkother [1] 
bhm[ 2, 2 ] <- pdata33$fotherother [1] 
 
print(bhm) 
 
# We check quasiconcavity in output quantities at the first observation  
# by calculating the first and second leading principal minor: 
det(bhm) 
 
pdata33$quasiConv <- NA 
for( obs in 1:nrow( pdata33 ) ) { 
bhmLoop <- matrix( 0, nrow = 2, ncol = 2 ) 
bhmLoop[ 1, 1 ] <- pdata33$fmilkmilk[ 1 ] 
bhmLoop[ 1, 2 ] <- bhmLoop[ 2, 1 ] <- pdata33$fmilkother[ 1 ]   
bhmLoop[ 2, 2 ] <- pdata33$fotherother [ 1 ] 
pdata33$quasiConv[ obs ] <- det( bhmLoop[ 1:2, 1:2 ] ) < 0  
} 
sum(pdata33$quasiConv) 
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#### Concave in inputs #### 
pdata33$ffeed <- pdata33$efeedTLidf *  1 / pdata33$feedexpMS 
pdata33$fvet <- pdata33$evetTLidf *  1 / pdata33$vetmedMS 
pdata33$fwages <- pdata33$ewagesTLidf *  1 / pdata33$totalwagesMS 
pdata33$fland <- pdata33$elandTLidf *  1 / pdata33$landMS 
pdata33$fcap <- pdata33$ecapTLidf *  1 / pdata33$capitalMS 
pdata33$fmat <- pdata33$ematTLidf *  1 / pdata33$materialsMS 
 
 
pdata33$ffeedfeedTLidf <- with(pdata33,  
                        ( bfeedfeed + efeedTLidf * efeedTLidf - 1 * efeedTLidf ) 
                        / + ( 1 / ( feedexpMS * feedexpMS ) ) ) 
 
pdata33$ffeedvetTLidf <- fvetfeedTLidf <- with (pdata33,  
                                        ( bfeedvet + efeedTLidf * evetTLidf - 0 * efeedTLidf ) 
                                        / +(1/( feedexpMS*vetmedMS))) 
 
pdata33$ffeedwagesTLidf <- fwagesfeedTLidf <- with (pdata33,  
                                           ( bfeedwages + efeedTLidf * ewagesTLidf - 0 * efeedTLidf ) 
                                           / +(1/( feedexpMS*totalwagesMS))) 
 
pdata33$ffeedlandTLidf <- flandfeedTLidf <- with (pdata33,  
                                         ( bfeedland + efeedTLidf * elandTLidf - 0 * efeedTLidf ) 
                                         / +(1/( feedexpMS*landMS))) 
 
pdata33$ffeedcapTLidf <- fcapfeedTLidf <- with (pdata33,  
                                        ( bfeedcap + efeedTLidf * ecapTLidf - 0 * efeedTLidf ) 
                                       / +(1/( feedexpMS*capitalMS))) 
 
pdata33$ffeedmatTLidf <- fmatfeedTLidf <- with (pdata33,  
                                       ( bfeedmat + efeedTLidf * ematTLidf - 0 * efeedTLidf ) 
                                        / +(1/( feedexpMS*materialsMS))) 
pdata33$fvetvetTLidf <- with(pdata33,  
                        ( bvetvet + evetTLidf * evetTLidf - 1 * evetTLidf ) 
                        / + ( 1 / ( vetmedMS * vetmedMS ) ) ) 
 
pdata33$fvetwagesTLidf <- fwagesvetTLidf <- with (pdata33,  
                                        ( bvetwages + evetTLidf * ewagesTLidf - 0 * evetTLidf ) 
                                        / +(1/( vetmedMS*totalwagesMS))) 
 
pdata33$fvetlandTLidf <- flandvetTLidf <- with (pdata33,  
                                          ( bvetland + evetTLidf * elandTLidf - 0 * evetTLidf ) 
                                          / +(1/( vetmedMS*landMS))) 
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pdata33$fvetcapTLidf <- fcapvetTLidf <- with (pdata33,  
                                         ( bvetcap + evetTLidf * ecapTLidf - 0 * evetTLidf ) 
                                         / +(1/( vetmedMS*capitalMS))) 
 
pdata33$fvetmatTLidf <- fmatvetTLidf <- with (pdata33,  
                                          ( bvetmat + evetTLidf * ematTLidf - 0 * evetTLidf ) 
                                          / +(1/( vetmedMS*materialsMS))) 
 
pdata33$fwageswagesTLidf <- with(pdata33,  
                             ( bwageswages + ewagesTLidf * ewagesTLidf - 1 * ewagesTLidf ) 
                             / + ( 1 / ( totalwagesMS * totalwagesMS ) ) ) 
 
pdata33$fwageslandTLidf <- flandwagesTLidf <- with (pdata33,  
                                    ( bwagesland + ewagesTLidf * elandTLidf - 0 * ewagesTLidf ) 
                                    / +(1/( totalwagesMS*landMS))) 
 
pdata33$fwagescapTLidf <- fcapwagesTLidf <- with (pdata33,  
                                          ( bwagescap + ewagesTLidf * ecapTLidf - 0 * ewagesTLidf ) 
                                            / +(1/( totalwagesMS*capitalMS))) 
 
pdata33$fwagesmatTLidf <- fmatwagesTLidf <- with (pdata33,  
                                           ( bwagesmat + ewagesTLidf * ematTLidf - 0 * ewagesTLidf ) 
                                            / +(1/( totalwagesMS*materialsMS))) 
 
pdata33$flandlandTLidf <- with(pdata33,  
                                 ( blandland + elandTLidf * elandTLidf - 1 * elandTLidf ) 
                                 / + ( 1 / ( landMS * landMS ) ) ) 
 
pdata33$flandcapTLidf <- fcaplandTLidf <- with (pdata33,  
                                        ( blandcap + elandTLidf * ecapTLidf - 0 * elandTLidf ) 
                                        / +(1/( landMS*capitalMS))) 
 
pdata33$flandmatTLidf <- fmatlandTLidf <- with (pdata33,  
                                        ( blandmat + elandTLidf * ematTLidf - 0 * elandTLidf ) 
                                        / +(1/( landMS*materialsMS))) 
 
pdata33$fcapcapTLidf <- with(pdata33,  
                        ( bcapcap + ecapTLidf * ecapTLidf - 1 * ecapTLidf ) 
                        / + ( 1 / ( capitalMS * capitalMS ) ) ) 
 
pdata33$fcapmatTLidf <- fmatcapTLidf <- with (pdata33,  
                                      ( bcapmat + ecapTLidf * ematTLidf - 0 * ecapTLidf ) 
                                      / +(1/( capitalMS*materialsMS))) 
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pdata33$fmatmatTLidf <- with(pdata33,  
                             ( bmatmat + ematTLidf * ematTLidf - 1 * ematTLidf ) 
                             / + ( 1 / ( materialsMS * materialsMS ) ) ) 
 
# First, we prepare the Hessian matrix for the first observation: 
hessian <- matrix( NA, nrow = 6, ncol = 6 ) 
hessian[ 1, 1 ] <- pdata33$ffeedfeedTLidf[1] 
hessian[ 1, 2 ] <- hessian[ 2, 1 ] <- pdata33$ffeedvetTLidf[1] 
hessian[ 1, 3 ] <- hessian[ 3, 1 ] <- pdata33$ffeedwagesTLidf[1] 
hessian[ 1, 4 ] <- hessian[ 4, 1 ] <- pdata33$ffeedlandTLidf[1] 
hessian[ 1, 5 ] <- hessian[ 5, 1 ] <- pdata33$ffeedcapTLidf[1] 
hessian[ 1, 6 ] <- hessian[ 6, 1 ] <- pdata33$ffeedmatTLidf[1] 
hessian[ 2, 2 ] <- pdata33$fvetvetTLidf[1] 
hessian[ 2, 3 ] <- hessian[ 3, 2 ] <-pdata33$fvetwagesTLidf[1] 
hessian[ 2, 4 ] <- hessian[ 4, 2 ] <-pdata33$fvetlandTLidf[1] 
hessian[ 2, 5 ] <- hessian[ 5, 2 ] <-pdata33$fvetcapTLidf[1] 
hessian[ 2, 6 ] <- hessian[ 6, 2 ] <-pdata33$fvetmatTLidf[1] 
hessian[ 3, 3 ] <- pdata33$fwageswagesTLidf[1] 
hessian[ 3, 4 ] <- hessian[ 4, 3 ] <-pdata33$fwageslandTLidf[1] 
hessian[ 3, 5 ] <- hessian[ 5, 3 ] <-pdata33$fwagescapTLidf[1] 
hessian[ 3, 6 ] <- hessian[ 6, 3 ] <-pdata33$fwagesmatTLidf[1] 
hessian[ 4, 4 ] <- pdata33$flandlandTLidf[1] 
hessian[ 4, 5 ] <- hessian[ 5, 4 ] <-pdata33$flandcapTLidf[1] 
hessian[ 4, 6 ] <- hessian[ 6, 4 ] <-pdata33$flandmatTLidf[1] 
hessian[ 5, 5 ] <- pdata33$fcapcapTLidf[1] 
hessian[ 5, 6 ] <- hessian[ 6, 5 ] <-pdata33$fcapmatTLidf[1] 
hessian[ 6, 6 ] <- pdata33$fmatmatTLidf[1] 
print( hessian ) 
 
# As all diagonal elements of this Hessian matrix are zero, the necessary  
# conditions for positive semidefiniteness are not fulfilled for the first observation. 
 
det( hessian ) 
 
pdata33$concaveTLidf <- pdata33$ffeedfeed <= 0 
sum(pdata33$concaveTLidf) 
 
### Effects of production characteristics ###  
(exp(coef( TLidf )[c("Regnskabsaar2012")])-1)*100  
(exp(coef( TLidf )[c("Regnskabsaar2013")])-1)*100  
(exp(coef( TLidf )[c("Regnskabsaar2014")])-1)*100  
(exp(coef( TLidf )[c("Regnskabsaar2015")])-1)*100   
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(exp(coef( TLidf )[c("milkingsystem2")])-1)*100  
(exp(coef( TLidf )[c("milkingsystem3")])-1)*100  
(exp(coef( TLidf )[c("jersey")])-1)*100  
(exp(coef( TLidf )[c("organic")])-1)*100  
 
### Calculating marginal effects of z-variables ###  
pdata33$effzvar <- efficiencies(TLidf, asInData=TRUE, margEff = TRUE) 
summary(pdata33$effzvar)  
METLidfz<-attr(pdata33$effzvar, "margEff") 
summary(METLidfz) 
 
hist(METLidfz,50) 
 
### Efficiency over time ###  
 
# 2011  
summary(pdata33$Regnskabsaar==2011)  
summary(pdata33$eff>=0.95 & pdata33$Regnskabsaar==2011)  
summary(pdata33$eff>=0.90 & pdata33$eff<0.95 & pdata33$Regnskabsaar==2011)    
summary(pdata33$eff>=0.85 & pdata33$eff<0.90 & pdata33$Regnskabsaar==2011)   
summary(pdata33$eff>=0.80 & pdata33$eff<0.85 & pdata33$Regnskabsaar==2011)   
summary(pdata33$eff<0.80 & pdata33$Regnskabsaar==2011)  
 
# 2012 
summary(pdata33$Regnskabsaar==2012)  
summary(pdata33$eff>=0.95 & pdata33$Regnskabsaar==2012)  
summary(pdata33$eff>=0.90 & pdata33$eff<0.95 & pdata33$Regnskabsaar==2012)   
summary(pdata33$eff>=0.85 & pdata33$eff<0.90 & pdata33$Regnskabsaar==2012)   
summary(pdata33$eff>=0.80 & pdata33$eff<0.85 & pdata33$Regnskabsaar==2012)   
summary(pdata33$eff<0.80 & pdata33$Regnskabsaar==2012)  
 
# 2013 
summary(pdata33$Regnskabsaar==2013)  
summary(pdata33$eff>=0.95 & pdata33$Regnskabsaar==2013)  
summary(pdata33$eff>=0.90 & pdata33$eff<0.95 & pdata33$Regnskabsaar==2013)   
summary(pdata33$eff>=0.85 & pdata33$eff<0.90 & pdata33$Regnskabsaar==2013)   
summary(pdata33$eff>=0.80 & pdata33$eff<0.85 & pdata33$Regnskabsaar==2013)   
summary(pdata33$eff<0.80 & pdata33$Regnskabsaar==2013)  
 
# 2014 
summary(pdata33$Regnskabsaar==2014)  
summary(pdata33$eff>=0.95 & pdata33$Regnskabsaar==2014)  
summary(pdata33$eff>=0.90 & pdata33$eff<0.95 & pdata33$Regnskabsaar==2014) 
summary(pdata33$eff>=0.85 & pdata33$eff<0.90 & pdata33$Regnskabsaar==2014)   
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summary(pdata33$eff>=0.80 & pdata33$eff<0.85 & pdata33$Regnskabsaar==2014)   
summary(pdata33$eff<0.80 & pdata33$Regnskabsaar==2014)  
 
# 2015 
summary(pdata33$Regnskabsaar==2015)  
summary(pdata33$eff>=0.95 & pdata33$Regnskabsaar==2015)  
summary(pdata33$eff>=0.90 & pdata33$eff<0.95 & pdata33$Regnskabsaar==2015)   
summary(pdata33$eff>=0.85 & pdata33$eff<0.90 & pdata33$Regnskabsaar==2015)   
summary(pdata33$eff>=0.80 & pdata33$eff<0.85 & pdata33$Regnskabsaar==2015)   
summary(pdata33$eff<0.80 & pdata33$Regnskabsaar==2015)  
 
### TE and Size ###  
pdata33$totaloutput<-pdata33$grossmilk+pdata33$grossother 
plot(pdata33$yearcows,pdata33$eff, log="x") 
plot( pdata33$totaloutput, pdata33$eff , log="x")  
 
############################################## 
#### Excluding those without monotonicity ####  
############################################## 
pdata44<-subset(pdata33,efeedTLidf >= 0 & evetTLidf  >= 0 & ewagesTLidf >= 0 
                        & elandTLidf >= 0 & ecapTLidf  >= 0 & ematTLidf >= 0 
                        & emilkTLidf <= 0 & eotherTLidf  <= 0) 
 
pdata44$effzvar <- efficiencies(TLidf, asInData=TRUE, margEff = TRUE) 
summary(pdata44$effzvar)  
 
### summary statistics of distance elasticities ###  
summary(pdata44[,c( "efeedTLidf", "evetTLidf","ewagesTLidf","elandTLidf", 
                    "ecapTLidf","ematTLidf","emilkTLidf","eotherTLidf")]) 
 
# check if distance elasticities of the inputs sum up to one: they do!  
range(pdata44$efeedTLidf + pdata44$evetTLidf+pdata44$ewagesTLidf+pdata44$elandTLidf 
      +pdata44$ecapTLidf + pdata44$ematTLidf) 
 
### Elasticity of scale ###  
pdata44$eScaleTLidf <- (-(pdata44$eotherTLidf + pdata44$emilkTLidf))^(-1) 
summary(pdata44$eScaleTLidf) 
sd(pdata44$eScaleTLidf) 
sum(pdata44$eScaleTLidf> 2 | pdata44$eScaleTLidf< 0.5) 
 
sd(pdata44$efeedTLidf) 
sd(pdata44$evetTLidf) 
sd(pdata44$ewagesTLidf) 
sd(pdata44$elandTLidf) 
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sd(pdata44$ecapTLidf) 
sd(pdata44$ematTLidf) 
sd(pdata44$emilkTLidf) 
sd(pdata44$eotherTLidf) 
 
### The input distance function with "hours" instead of "labour" (totalwages) ### 
 
#### Using hours instead of wages ####  
TLidfhourshours <- sfa(-log(materialsMS) ~ log(grossmilkMS)   
                       + log (grossotherMS) 
                        
                       + I( 0.5 * log( grossmilkMS )^2 ) 
                       + I( 0.5 * log( grossotherMS )^2 ) 
                       + I( log( grossmilkMS) * log ( grossotherMS ) ) 
                        
                       + log (feedexpMS/materialsMS)  
                       + log( vetmedMS/materialsMS ) 
                       + log(hoursMS/materialsMS)  
                       + log(landMS/materialsMS) 
                       + log(capitalMS/materialsMS) 
                        
                       + I(0.5 * log(feedexpMS/materialsMS)^2) 
                       + I(0.5 * log(vetmedMS/materialsMS)^2) 
                       + I(0.5 * log(hoursMS/materialsMS)^2) 
                       + I(0.5 * log(landMS/materialsMS)^2) 
                       + I(0.5 * log(capitalMS/materialsMS)^2) 
                        
                       + I(log(feedexpMS/materialsMS) * log(vetmedMS/materialsMS)) 
                       + I(log(feedexpMS/materialsMS) * log(hoursMS/materialsMS)) 
                       + I(log(feedexpMS/materialsMS) * log(landMS/materialsMS)) 
                       + I(log(feedexpMS/materialsMS) * log(capitalMS/materialsMS)) 
                       + I(log(vetmedMS/materialsMS) * log(hoursMS/materialsMS)) 
                       + I(log(vetmedMS/materialsMS) * log(landMS/materialsMS)) 
                       + I(log(vetmedMS/materialsMS) * log(capitalMS/materialsMS)) 
                       + I(log(hoursMS/materialsMS) * log(landMS/materialsMS)) 
                       + I(log(hoursMS/materialsMS) * log(capitalMS/materialsMS)) 
                       + I(log(landMS/materialsMS) * log(capitalMS/materialsMS)) 
                        
                       + I(log(feedexpMS/materialsMS) * log( grossmilkMS )) 
                       + I(log(feedexpMS/materialsMS) * log( grossotherMS )) 
                       + I(log(vetmedMS/materialsMS) * log( grossmilkMS )) 
                       + I(log(vetmedMS/materialsMS) * log( grossotherMS )) 
                       + I(log(hoursMS/materialsMS) * log( grossmilkMS )) 
                       + I(log(hoursMS/materialsMS) * log( grossotherMS )) 
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                       + I(log(landMS/materialsMS) * log( grossmilkMS )) 
                       + I(log(landMS/materialsMS) * log( grossotherMS )) 
                       + I(log(capitalMS/materialsMS) * log( grossmilkMS )) 
                       + I(log(capitalMS/materialsMS) * log( grossotherMS )) 
                       + Regnskabsaar 
                       + milkingsystem 
                       + jersey 
                       + organic  
                       |   
                       + mastitis  
                       + hoofdis  
                       + reprodis  
                       + otherdis 
                       + cell1 
                       + viable1 
                       + spore1 
                       ,data = pdata33 
                       , ineffDecrease = TRUE ,timeEffect = TRUE 
                       ,searchStep = sfaSearchStep, searchTol = sfaSearchTol, tol = sfaTol) 
summary(TLidfhourshours, extraPar = TRUE) 
lrtest(TLidfhourshours) 
 
### Test the properties ###  
########################### 
### Coefficients of TLidfhourshours ###  
 
amilk <- coef( TLidfhourshours )["log(grossmilkMS)"] 
aother <- coef( TLidfhourshours )["log(grossotherMS)"] 
amilkmilk <- - coef( TLidfhourshours )["I(0.5 * log(grossmilkMS)^2)"] 
aotherother <- coef( TLidfhourshours )["I(0.5 * log(grossotherMS)^2)"] 
amilkother <- aothermilk <- coef( TLidfhourshours )["I(log(grossmilkMS) * 
log(grossotherMS))"] 
 
bfeed <- coef(TLidfhourshours)["log(feedexpMS/materialsMS)"] 
bvet <- coef(TLidfhourshours)["log(vetmedMS/materialsMS)"] 
bhours <- coef(TLidfhourshours)["log(hoursMS/materialsMS)"] 
bland <- coef(TLidfhourshours)["log(landMS/materialsMS)"] 
bcap <- coef(TLidfhourshours)["log(capitalMS/materialsMS)"] 
bmat <- 1-(bfeed+bvet+bhours+bland+bcap) 
 
bfeedfeed <- coef(TLidfhourshours)["I(0.5 * log(feedexpMS/materialsMS)^2)"] 
bvetvet <- coef(TLidfhourshours)["I(0.5 * log(vetmedMS/materialsMS)^2)"] 
bhourshours <- coef(TLidfhourshours)["I(0.5 * log(hoursMS/materialsMS)^2)"] 
blandland <-coef(TLidfhourshours)["I(0.5 * log(landMS/materialsMS)^2)"] 
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bcapcap <- coef(TLidfhourshours)["I(0.5 * log(capitalMS/materialsMS)^2)"] 
 
bfeedvet <- bvetfeed <-coef(TLidfhourshours)["I(log(feedexpMS/materialsMS) * 
log(vetmedMS/materialsMS))"] 
bfeedhours <- bhoursfeed <- coef(TLidfhourshours)["I(log(feedexpMS/materialsMS) * 
log(hoursMS/materialsMS))"] 
bfeedland <- blandfeed <- coef(TLidfhourshours)["I(log(feedexpMS/materialsMS) * 
log(landMS/materialsMS))"] 
bfeedcap <- bcapfeed <- coef(TLidfhourshours)["I(log(feedexpMS/materialsMS) * 
log(capitalMS/materialsMS))"] 
bvethours <- bhoursvet <-coef(TLidfhourshours)["I(log(vetmedMS/materialsMS) * 
log(hoursMS/materialsMS))"] 
bvetland <- blandvet <- coef(TLidfhourshours)["I(log(vetmedMS/materialsMS) * 
log(landMS/materialsMS))"] 
bvetcap <- bcapvet <- coef(TLidfhourshours)["I(log(vetmedMS/materialsMS) * 
log(capitalMS/materialsMS))"] 
bhoursland <- blandhours <-coef(TLidfhourshours)["I(log(hoursMS/materialsMS) * 
log(landMS/materialsMS))"] 
bhourscap <- bcaphours <-coef(TLidfhourshours)["I(log(hoursMS/materialsMS) * 
log(capitalMS/materialsMS))"] 
blandcap <- bcapland <-coef(TLidfhourshours)["I(log(landMS/materialsMS) * 
log(capitalMS/materialsMS))"] 
 
bfeedmat <- bmatfeed <- -(bfeedfeed + bfeedvet + bfeedhours + bfeedland + bfeedcap) 
bvetmat <- bmatvet <- - (bvetvet + bvetfeed + bvethours + bvetland + bvetcap ) 
bhoursmat <- bmathours <- -(bhourshours + bhoursfeed + bhoursvet + bhoursland + bhourscap) 
blandmat <- bmatland <- - (blandland + blandfeed + blandvet + blandhours + blandcap) 
bcapmat <- bmatcap <- - (bcapcap + bcapfeed + bcapvet + bcaphours + bcapland) 
bmatmat <- -(bmatfeed + bmatvet + bmathours + bmatland + bmatcap) 
 
zfeedmilk <- coef(TLidfhourshours)["I(log(feedexpMS/materialsMS) * log(grossmilkMS))"] 
zfeedother <- coef(TLidfhourshours)["I(log(feedexpMS/materialsMS) * log(grossotherMS))"] 
zvetmilk <- coef(TLidfhourshours)["I(log(vetmedMS/materialsMS) * log(grossmilkMS))"] 
zvetother <- coef(TLidfhourshours)["I(log(vetmedMS/materialsMS) * log(grossotherMS))"] 
zhoursmilk <- coef(TLidfhourshours)["I(log(hoursMS/materialsMS) * log(grossmilkMS))"] 
zhoursother <- coef(TLidfhourshours)["I(log(hoursMS/materialsMS) * log(grossotherMS))"] 
zlandmilk <- coef(TLidfhourshours)["I(log(landMS/materialsMS) * log(grossmilkMS))"] 
zlandother <- coef(TLidfhourshours)["I(log(landMS/materialsMS) * log(grossotherMS))"] 
zcapmilk <- coef(TLidfhourshours)["I(log(capitalMS/materialsMS) * log(grossmilkMS))"] 
zcapother <- coef(TLidfhourshours)["I(log(capitalMS/materialsMS) * log(grossotherMS))"] 
zmatmilk <- -( zfeedmilk + zvetmilk + zhoursmilk + zlandmilk + zcapmilk  ) 
zmatother <- -(zfeedother + zvetother + zhoursother + zlandother + zcapother ) 
 
### Input elasticities ###  
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### feed ###  
pdata33$efeedTLidfhours <- with(pdata33, bfeed  
                           + bfeedfeed * I(log(feedexpMS)) 
                           + bfeedvet * I(log(vetmedMS)) 
                           + bfeedhours * I(log(hoursMS)) 
                           + bfeedland * I(log(landMS)) 
                           + bfeedcap* I(log(capitalMS)) 
                           + bfeedmat * I(log(materialsMS)) 
                           + I(zfeedmilk * log(grossmilkMS)) 
                           + I(zfeedother * log(grossotherMS)))  
 
### vet ###  
pdata33$evetTLidfhours <- with(pdata33, bvet  
                          + bvetvet * I(log(vetmedMS)) 
                          + bvethours * I(log(hoursMS)) 
                          + bvetfeed * I(log(feedexpMS)) 
                          + bvetland * I(log(landMS)) 
                          + bvetcap* I(log(capitalMS)) 
                          + bvetmat * I(log(materialsMS)) 
                          + I(zvetmilk * log(grossmilkMS)) 
                          + I(zvetother * log(grossotherMS)))  
mean(pdata33$evetTLidfhours) 
 
### totalhours ###  
pdata33$ehoursTLidfhours <- with(pdata33, bhours  
                            + bhourshours * I(log(hoursMS)) 
                            + bhoursvet * I(log(vetmedMS)) 
                            + bhoursfeed * I(log(feedexpMS)) 
                            + bhoursland * I(log(landMS)) 
                            + bhourscap* I(log(capitalMS)) 
                            + bhoursmat * I(log(materialsMS)) 
                            + I(zhoursmilk * log(grossmilkMS)) 
                            + I(zhoursother * log(grossotherMS)))             
mean(pdata33$ehoursTLidfhours) 
 
### land ###  
pdata33$elandTLidfhours<- with(pdata33, bland  
                           + blandland * I(log(landMS)) 
                           + blandvet * I(log(vetmedMS)) 
                           + blandfeed * I(log(feedexpMS)) 
                           + blandhours * I(log(hoursMS)) 
                           + blandcap* I(log(capitalMS)) 
                           + blandmat * I(log(materialsMS)) 
                           + I(zlandmilk * log(grossmilkMS)) 
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                           + I(zlandother * log(grossotherMS)))           
 
### capital ###  
pdata33$ecapTLidfhours <- with(pdata33, bcap  
                          + bcapcap * I(log(capitalMS)) 
                          + bcapfeed * I(log(feedexpMS)) 
                          + bcapvet * I(log(vetmedMS)) 
                          + bcaphours * I(log(hoursMS)) 
                          + bcapland * I(log(landMS)) 
                          + bcapmat * I(log(materialsMS)) 
                          + I(zcapmilk * log(grossmilkMS)) 
                          + I(zcapother * log(grossotherMS))) 
 
### materials ###  
pdata33$ematTLidfhours <- with(pdata33, bmat  
                          + bmatmat * I(log(materialsMS)) 
                          + bmatfeed * I(log(feedexpMS)) 
                          + bmatvet * I(log(vetmedMS)) 
                          + bmathours * I(log(hoursMS)) 
                          + bmatland * I(log(landMS)) 
                          + bmatcap * I(log(capitalMS)) 
                          + I(zmatmilk * log(grossmilkMS)) 
                          + I(zmatother * log(grossotherMS))) 
### Output elasticities ###  
### gross milk ###  
pdata33$emilkTLidfhours <- with(pdata33, amilk  
                           + amilkother * I(log(grossotherMS)) 
                           + zfeedmilk * I(log(feedexpMS)) 
                           + zvetmilk * I(log(vetmedMS)) 
                           + zhoursmilk * I(log(hoursMS)) 
                           + zlandmilk * I(log(landMS)) 
                           + zcapmilk * I(log(capitalMS)) 
                           + zmatmilk * I(log(materialsMS))) 
 
### gross other ###  
pdata33$eotherTLidfhours <- with(pdata33, aother   
                            + aothermilk * I(log(grossmilkMS)) 
                            + zfeedother * I(log(feedexpMS)) 
                            + zvetother * I(log(vetmedMS)) 
                            + zhoursother * I(log(hoursMS)) 
                            + zlandother * I(log(landMS)) 
                            + zcapother * I(log(capitalMS)) 
                            + zmatother * I(log(materialsMS))) 
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### summary statistics of distance elasticities ###  
summary(pdata33[,c( "efeedTLidfhours", 
"evetTLidfhours","ehoursTLidfhours","elandTLidfhours", 
                    "ecapTLidfhours","ematTLidfhours","emilkTLidfhours","eotherTLidfhours")]) 
 
# check if distance elasticities of the inputs sum up to one: they do!  
range(pdata33$efeedTLidfhours + 
pdata33$evetTLidfhours+pdata33$ehoursTLidfhours+pdata33$elandTLidfhours 
      +pdata33$ecapTLidfhours + pdata33$ematTLidfhours ) 
 
### Elasticity of scale ###  
pdata33$eScaleTLidfhours <- (-(pdata33$eotherTLidfhours + pdata33$emilkTLidfhours))^(-1) 
summary(pdata33$eScaleTLidfhours) 
sd(pdata33$ eScaleTLidfhours) 
sum( pdata33$eScaleTLidfhours> 2 | pdata33$eScaleTLidfhours < 0.5 ) 
# Monotonicity in input and output quantities. 
# Di(x,y) is non-decreasing in x if its first order derivatives with  
# respect to input quantities are non-negative  
 
sum(pdata33$efeedTLidfhours >= 0) 
sum(pdata33$evetTLidfhours  >= 0) 
sum(pdata33$ehoursTLidfhours >= 0) 
sum(pdata33$elandTLidfhours >= 0) 
sum(pdata33$ecapTLidfhours  >= 0) 
sum(pdata33$ematTLidfhours >= 0) 
 
pdata33$monoTLidfhourshours<-with(pdata33,efeedTLidfhours >= 0 & evetTLidfhours  >= 0 &  
                            ehoursTLidfhours >= 0 & elandTLidfhours >= 0 & ecapTLidfhours  >= 0  
                            & ematTLidfhours >= 0) 
 
# number that violates monotonicity assumption (input) 
sum( pdata33$monoTLidfhourshours )  
sum( !pdata33$monoTLidfhourshours )  
sum( pdata33$monoTLidfhourshours )/(sum( !pdata33$monoTLidfhourshours ) 
+sum(pdata33$monoTLidfhourshours))  
 
# Di(x,y) is non-increasing in y if its first order derivatives with respect  
# to input quantities are non-positive. 
 
sum(pdata33$emilkTLidfhours <= 0) 
sum(pdata33$eotherTLidfhours  <= 0) 
 
# number that violates monotonicity assumption (output) 
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pdata33$monooutTLidfhourshours<-with(pdata33,emilkTLidfhours <= 0 & eotherTLidfhours  
<= 0) 
sum( pdata33$monooutTLidfhourshours )  
sum( !pdata33$monooutTLidfhourshours )  
sum( pdata33$monooutTLidfhourshours)/(sum( !pdata33$monooutTLidfhourshours ) 
+sum(pdata33$monooutTLidfhourshours))  
 
# We can check if estimated Translog input distance is concave in input quantities (x)  
# and quasiconcave in output quantities (y) at the frontier. 
 
#### Quasi-concave in outputs ####  
# first-order partial derivatives wrt outputs (with input distance measure = 1 ) 
pdata33$fmilkmilk <- amilk * (amilk-1) * 1 / pdata33$grossmilkMS^2 
pdata33$fmilkother <- amilk * aother * 1 / (pdata33$grossmilkMS * pdata33$grossotherMS) 
pdata33$fotherother <- aother * (aother-1) * 1 / pdata33$grossotherMS^2 
 
# The following code creates a three-dimensional array with the Hessian matrices  
# at all observations stacked upon each other: 
bhm <- matrix( 0, nrow = 2, ncol = 2 ) 
bhm[ 1, 1 ] <- pdata33$fmilkmilk [1] 
bhm[ 1, 2 ] <- bhm[ 2, 1 ] <- pdata33$fmilkother [1] 
bhm[ 2, 2 ] <- pdata33$fotherother [1] 
 
print(bhm) 
 
# We check quasiconcavity in output quantities at the first observation  
# by calculating the first and second leading principal minor: 
det(bhm) 
 
pdata33$quasiConv <- NA 
for( obs in 1:nrow( pdata33 ) ) { 
  bhmLoop <- matrix( 0, nrow = 2, ncol = 2 ) 
  bhmLoop[ 1, 1 ] <- pdata33$fmilkmilk[ 1 ] 
  bhmLoop[ 1, 2 ] <- bhmLoop[ 2, 1 ] <- pdata33$fmilkother[ 1 ]   
  bhmLoop[ 2, 2 ] <- pdata33$fotherother [ 1 ] 
  pdata33$quasiConv[ obs ] <- det( bhmLoop[ 1:2, 1:2 ] ) < 0  
} 
sum(pdata33$quasiConv) 
 
#### Concave in inputs ####  
# second-order partial derivatives wrt output (with input distance measure = 1 ) 
pdata33$ffeed <- pdata33$efeedTLidfhours *  1 / pdata33$feedexpMS 
pdata33$fvet <- pdata33$evetTLidfhours *  1 / pdata33$vetmedMS 
pdata33$fhours <- pdata33$ehoursTLidfhours *  1 / pdata33$hoursMS 
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pdata33$fland <- pdata33$elandTLidfhours *  1 / pdata33$landMS 
pdata33$fcap <- pdata33$ecapTLidfhours *  1 / pdata33$capitalMS 
pdata33$fmat <- pdata33$ematTLidfhours *  1 / pdata33$materialsMS 
 
pdata33$ffeedfeedTLidfhours <- with(pdata33,  
                               ( bfeedfeed + efeedTLidfhours * efeedTLidfhours - 1 * efeedTLidfhours ) 
                               / + ( 1 / ( feedexpMS * feedexpMS ) ) ) 
 
pdata33$ffeedvetTLidfhours <- fvetfeedTLidfhours <- with (pdata33,  
                                                ( bfeedvet + efeedTLidfhours * evetTLidfhours - 0 * 
efeedTLidfhours ) 
                                                / +(1/( feedexpMS*vetmedMS))) 
 
pdata33$ffeedhoursTLidfhours <- fhoursfeedTLidfhours <- with (pdata33,  
                                                    ( bfeedhours + efeedTLidfhours * ehoursTLidfhours - 0 * 
efeedTLidfhours ) 
                                                    / +(1/( feedexpMS*hoursMS))) 
 
pdata33$ffeedlandTLidfhours <- flandfeedTLidfhours <- with (pdata33,  
                                                  ( bfeedland + efeedTLidfhours * elandTLidfhours - 0 * 
efeedTLidfhours ) 
                                                  / +(1/( feedexpMS*landMS))) 
 
pdata33$ffeedcapTLidfhours <- fcapfeedTLidfhours <- with (pdata33,  
                                                ( bfeedcap + efeedTLidfhours * ecapTLidfhours - 0 * 
efeedTLidfhours ) 
                                                / +(1/( feedexpMS*capitalMS))) 
 
pdata33$ffeedmatTLidfhours <- fmatfeedTLidfhours <- with (pdata33,  
                                                ( bfeedmat + efeedTLidfhours * ematTLidfhours - 0 * 
efeedTLidfhours ) 
                                                / +(1/( feedexpMS*materialsMS))) 
pdata33$fvetvetTLidfhours <- with(pdata33,  
                             ( bvetvet + evetTLidfhours * evetTLidfhours - 1 * evetTLidfhours ) 
                             / + ( 1 / ( vetmedMS * vetmedMS ) ) ) 
 
pdata33$fvethoursTLidfhours <- fhoursvetTLidfhours <- with (pdata33,  
                                                  ( bvethours + evetTLidfhours * ehoursTLidfhours - 0 * 
evetTLidfhours ) 
                                                  / +(1/( vetmedMS*hoursMS))) 
 
pdata33$fvetlandTLidfhourshours <- flandvetTLidfhours <- with (pdata33,  
                                                ( bvetland + evetTLidfhours * elandTLidfhours - 0 * 
evetTLidfhours ) 



162 

                                                / +(1/( vetmedMS*landMS))) 
 
pdata33$fvetcapTLidfhours <- fcapvetTLidfhours <- with (pdata33,  
                                              ( bvetcap + evetTLidfhours * ecapTLidfhours - 0 * evetTLidfhours 
) 
                                              / +(1/( vetmedMS*capitalMS))) 
 
pdata33$fvetmatTLidfhours <- fmatvetTLidfhours <- with (pdata33,  
                                              ( bvetmat + evetTLidfhours * ematTLidfhours - 0 * evetTLidfhours 
) 
                                              / +(1/( vetmedMS*materialsMS))) 
 
pdata33$fhourshoursTLidfhours <- with(pdata33,  
                                 ( bhourshours + ehoursTLidfhours * ehoursTLidfhours - 1 * 
ehoursTLidfhours ) 
                                 / + ( 1 / ( hoursMS * hoursMS ) ) ) 
 
pdata33$fhourslandTLidfhours <- flandhoursTLidfhours <- with (pdata33,  
                                  ( bhoursland + ehoursTLidfhours * elandTLidfhours - 0 * 
ehoursTLidfhours ) 
                                    / +(1/( hoursMS*landMS))) 
 
pdata33$fhourscapTLidfhours <- fcaphoursTLidfhours <- with (pdata33,  
                              ( bhourscap + ehoursTLidfhours * ecapTLidfhours - 0 * ehoursTLidfhours ) 
                              / +(1/( hoursMS*capitalMS))) 
 
pdata33$fhoursmatTLidfhours <- fmathoursTLidfhours <- with (pdata33,  
                                 ( bhoursmat + ehoursTLidfhours * ematTLidfhours - 0 * ehoursTLidfhours 
) 
                            / +(1/( hoursMS*materialsMS))) 
 
pdata33$flandlandTLidfhours <- with(pdata33,  
                               ( blandland + elandTLidfhours * elandTLidfhours - 1 * elandTLidfhours ) 
                               / + ( 1 / ( landMS * landMS ) ) ) 
 
pdata33$flandcapTLidfhours <- fcaplandTLidfhours <- with (pdata33,  
                                                ( blandcap + elandTLidfhours * ecapTLidfhours - 0 * 
elandTLidfhours ) 
                                                / +(1/( landMS*capitalMS))) 
 
pdata33$flandmatTLidfhours <- fmatlandTLidfhours <- with (pdata33,  
                                                ( blandmat + elandTLidfhours * ematTLidfhours - 0 * 
elandTLidfhours ) 
                                                / +(1/( landMS*materialsMS))) 
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pdata33$fcapcapTLidfhours <- with(pdata33,  
                             ( bcapcap + ecapTLidfhours * ecapTLidfhours - 1 * ecapTLidfhours ) 
                             / + ( 1 / ( capitalMS * capitalMS ) ) ) 
 
pdata33$fcapmatTLidfhours <- fmatcapTLidfhours <- with (pdata33,  
                                              ( bcapmat + ecapTLidfhours * ematTLidfhours - 0 * 
ecapTLidfhours ) 
                                              / +(1/( capitalMS*materialsMS))) 
 
pdata33$fmatmatTLidfhours <- with(pdata33,  
                             ( bmatmat + ematTLidfhours * ematTLidfhours - 1 * ematTLidfhours ) 
                             / + ( 1 / ( materialsMS * materialsMS ) ) ) 
 
# First, we prepare the Hessian matrix for the first observation: 
hessian <- matrix( NA, nrow = 6, ncol = 6 ) 
hessian[ 1, 1 ] <- pdata33$ffeedfeedTLidfhours[1] 
hessian[ 1, 2 ] <- hessian[ 2, 1 ] <- pdata33$ffeedvetTLidfhours[1] 
hessian[ 1, 3 ] <- hessian[ 3, 1 ] <- pdata33$ffeedhoursTLidfhours[1] 
hessian[ 1, 4 ] <- hessian[ 4, 1 ] <- pdata33$ffeedlandTLidfhours[1] 
hessian[ 1, 5 ] <- hessian[ 5, 1 ] <- pdata33$ffeedcapTLidfhours[1] 
hessian[ 1, 6 ] <- hessian[ 6, 1 ] <- pdata33$ffeedmatTLidfhours[1] 
hessian[ 2, 2 ] <- pdata33$fvetvetTLidfhours[1] 
hessian[ 2, 3 ] <- hessian[ 3, 2 ] <-pdata33$fvethoursTLidfhours[1] 
hessian[ 2, 4 ] <- hessian[ 4, 2 ] <-pdata33$fvetlandTLidfhours[1] 
hessian[ 2, 5 ] <- hessian[ 5, 2 ] <-pdata33$fvetcapTLidfhours[1] 
hessian[ 2, 6 ] <- hessian[ 6, 2 ] <-pdata33$fvetmatTLidfhours[1] 
hessian[ 3, 3 ] <- pdata33$fhourshoursTLidfhours[1] 
hessian[ 3, 4 ] <- hessian[ 4, 3 ] <-pdata33$fhourslandTLidfhours[1] 
hessian[ 3, 5 ] <- hessian[ 5, 3 ] <-pdata33$fhourscapTLidfhours[1] 
hessian[ 3, 6 ] <- hessian[ 6, 3 ] <-pdata33$fhoursmatTLidfhours[1] 
hessian[ 4, 4 ] <- pdata33$flandlandTLidfhours[1] 
hessian[ 4, 5 ] <- hessian[ 5, 4 ] <-pdata33$flandcapTLidfhours[1] 
hessian[ 4, 6 ] <- hessian[ 6, 4 ] <-pdata33$flandmatTLidfhours[1] 
hessian[ 5, 5 ] <- pdata33$fcapcapTLidfhours[1] 
hessian[ 5, 6 ] <- hessian[ 6, 5 ] <-pdata33$fcapmatTLidfhours[1] 
hessian[ 6, 6 ] <- pdata33$fmatmatTLidfhours[1] 
print( hessian ) 
 
# As all diagonal elements of this Hessian matrix are zero, the necessary  
# conditions for positive semidefiniteness are not fulfilled for the first observation. 
 
det( hessian ) 
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pdata33$concaveTLidfhours <- pdata33$ffeedfeedTLidfhours<= 0 
sum(pdata33$concaveTLidfhours) 
 
######### ESTIMATE ODF ############# 
## step 4.2 ### 
 
library(foreign)  
library(frontier)  
library(AER)  
library(plm)  
library(gmp) 
library(Rmpfr) 
 
# We create new variables with mean-scaled input and output quantities: 
# ouptut quantities 
pdata33$grossmilkMS<-pdata33$grossmilk_2010level/mean(pdata33$grossmilk_2010level) 
pdata33$grossotherMS<-pdata33$grossother_2010level/mean(pdata33$grossother_2010level) 
# input quantities 
pdata33$vetmedMS<-pdata33$vetmed_2010level/mean(pdata33$vetmed_2010level) 
pdata33$hoursMS<-pdata33$hours/mean(pdata33$hours) 
pdata33$feedexpMS<-pdata33$feedexp_2010level/mean(pdata33$feedexp_2010level) 
pdata33$totalwagesMS<-pdata33$totalwages_2010level/mean(pdata33$totalwages_2010level) 
pdata33$landMS<-pdata33$land/mean(pdata33$land) 
pdata33$materialsMS<-pdata33$materials_2010level/mean(pdata33$materials_2010level) 
pdata33$capitalMS<-pdata33$capital/mean(pdata33$capital) 
 
 
 
#################################### 
#### OUTPUT DISTANCE FUNCTION ### 
#################################### 
 
# set arguments for all estimations using  sfa() 
sfaSearchStep <- 1e-6 
sfaSearchTol <- 1e-11 
sfaTol <- 1e-11 
 
#### Cobb-Douglas: General model (or unrestricted) ####  
###################################################### 
CDodfunres<-sfa( -log(grossmilkMS) ~ log(grossotherMS/grossmilkMS) 
                 + log( feedexpMS)  
                 + log( vetmedMS) 
                 + log(totalwagesMS)   
                 + log(landMS) 
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                 + log(capitalMS)   
                 + Regnskabsaar 
                 + milkingsystem 
                 + jersey 
                 + organic  
                 |   
                 + mastitis  
                 + hoofdis  
                 + reprodis  
                 + otherdis   
                 + cell1  
                 + viable1  
                 + spore1 
                 + consultant 
                 + managerage  
                 ,data=pdata33, ineffDecrease = FALSE,  
                 timeEffect = TRUE, 
                 searchStep = sfaSearchStep, searchTol = sfaSearchTol, tol = sfaTol ) 
summary(CDodfunres) 
 
### Translog: general model (unrestricted) ###  
###################################### 
TLodfunres <- sfa(-log(grossmilkMS) ~ log(grossotherMS/grossmilkMS)   
                  + I(0.5*log(grossotherMS/grossmilkMS)^2) 
                  + log(feedexpMS) + log(vetmedMS) + log(totalwagesMS)  
                  + log(landMS) + log(capitalMS) + log(materialsMS) 
                  + I(0.5*log(feedexpMS)^2) 
                  + I(0.5*log(vetmedMS)^2) 
                  + I(0.5*log(totalwagesMS)^2) 
                  + I(0.5*log(landMS)^2) 
                  + I(0.5*log(capitalMS)^2) 
                  + I(0.5*log(materialsMS)^2) 
                  + I(log(feedexpMS)*log(vetmedMS)) 
                  + I(log(feedexpMS)*log(totalwagesMS)) 
                  + I(log(feedexpMS)*log(landMS)) 
                  + I(log(feedexpMS)*log(capitalMS)) 
                  + I(log(feedexpMS)*log(materialsMS)) 
                  + I(log(vetmedMS)*log(totalwagesMS)) 
                  + I(log(vetmedMS)*log(landMS)) 
                  + I(log(vetmedMS)*log(capitalMS)) 
                  + I(log(vetmedMS)*log(materialsMS)) 
                  + I(log(totalwagesMS)*log(landMS)) 
                  + I(log(totalwagesMS)*log(capitalMS)) 
                  + I(log(totalwagesMS)*log(materialsMS)) 
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                  + I(log(landMS)*log(capitalMS)) 
                  + I(log(landMS)*log(materialsMS)) 
                  + I(log(capitalMS)*log(materialsMS)) 
                  + I(log(feedexpMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(vetmedMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(totalwagesMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(landMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(capitalMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(materialsMS)*log(grossotherMS/grossmilkMS)) 
                  + Regnskabsaar 
                  + milkingsystem 
                  + jersey 
                  + organic  
                  |   
                  + mastitis  
                  + hoofdis  
                  + reprodis  
                  + otherdis   
                  + cell1  
                  + viable1  
                  + spore1 
                  + managerage 
                  + consultant 
                  ,data = pdata33 
                  , ineffDecrease = FALSE ,timeEffect = TRUE 
                  ,searchStep = sfaSearchStep, searchTol = sfaSearchTol, tol = sfaTol) 
summary(TLodfunres) 
 
lrtest(TLodfunres) # Small p-value indicate that there is (output oriented) technical inefficiency. 
 
### Translog: restricted model with diseases ###  
############################################### 
TLodfres1 <- sfa(-log(grossmilkMS) ~ log(grossotherMS/grossmilkMS)   
                  + I(0.5*log(grossotherMS/grossmilkMS)^2) 
                  + log(feedexpMS) + log(vetmedMS) + log(totalwagesMS)  
                  + log(landMS) + log(capitalMS) + log(materialsMS) 
                  + I(0.5*log(feedexpMS)^2) 
                  + I(0.5*log(vetmedMS)^2) 
                  + I(0.5*log(totalwagesMS)^2) 
                  + I(0.5*log(landMS)^2) 
                  + I(0.5*log(capitalMS)^2) 
                  + I(0.5*log(materialsMS)^2) 
                  + I(log(feedexpMS)*log(vetmedMS)) 
                  + I(log(feedexpMS)*log(totalwagesMS)) 
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                  + I(log(feedexpMS)*log(landMS)) 
                  + I(log(feedexpMS)*log(capitalMS)) 
                  + I(log(feedexpMS)*log(materialsMS)) 
                  + I(log(vetmedMS)*log(totalwagesMS)) 
                  + I(log(vetmedMS)*log(landMS)) 
                  + I(log(vetmedMS)*log(capitalMS)) 
                  + I(log(vetmedMS)*log(materialsMS)) 
                  + I(log(totalwagesMS)*log(landMS)) 
                  + I(log(totalwagesMS)*log(capitalMS)) 
                  + I(log(totalwagesMS)*log(materialsMS)) 
                  + I(log(landMS)*log(capitalMS)) 
                  + I(log(landMS)*log(materialsMS)) 
                  + I(log(capitalMS)*log(materialsMS)) 
                  + I(log(feedexpMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(vetmedMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(totalwagesMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(landMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(capitalMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(materialsMS)*log(grossotherMS/grossmilkMS)) 
                  + Regnskabsaar 
                  + milkingsystem 
                  + jersey 
                  + organic  
                  |   
                  + mastitis  
                  + hoofdis  
                  + reprodis  
                  + otherdis  
                 + managerage 
                 + consultant 
                  ,data = pdata33 
                  , ineffDecrease = FALSE ,timeEffect = TRUE 
                  ,searchStep = sfaSearchStep, searchTol = sfaSearchTol, tol = sfaTol) 
summary(TLodfres1) 
 
lrtest(TLodfres1) # Small p-value indicate that there is (output oriented) technical inefficiency. 
lrtest(TLodfunres,TLodfres1) 
 
### Translog: restricted model with milk quality ###  
################################################### 
TLodfres2 <- sfa(-log(grossmilkMS) ~ log(grossotherMS/grossmilkMS)   
                  + I(0.5*log(grossotherMS/grossmilkMS)^2) 
                  + log(feedexpMS) + log(vetmedMS) + log(totalwagesMS)  
                  + log(landMS) + log(capitalMS) + log(materialsMS) 
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                  + I(0.5*log(feedexpMS)^2) 
                  + I(0.5*log(vetmedMS)^2) 
                  + I(0.5*log(totalwagesMS)^2) 
                  + I(0.5*log(landMS)^2) 
                  + I(0.5*log(capitalMS)^2) 
                  + I(0.5*log(materialsMS)^2) 
                  + I(log(feedexpMS)*log(vetmedMS)) 
                  + I(log(feedexpMS)*log(totalwagesMS)) 
                  + I(log(feedexpMS)*log(landMS)) 
                  + I(log(feedexpMS)*log(capitalMS)) 
                  + I(log(feedexpMS)*log(materialsMS)) 
                  + I(log(vetmedMS)*log(totalwagesMS)) 
                  + I(log(vetmedMS)*log(landMS)) 
                  + I(log(vetmedMS)*log(capitalMS)) 
                  + I(log(vetmedMS)*log(materialsMS)) 
                  + I(log(totalwagesMS)*log(landMS)) 
                  + I(log(totalwagesMS)*log(capitalMS)) 
                  + I(log(totalwagesMS)*log(materialsMS)) 
                  + I(log(landMS)*log(capitalMS)) 
                  + I(log(landMS)*log(materialsMS)) 
                  + I(log(capitalMS)*log(materialsMS)) 
                  + I(log(feedexpMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(vetmedMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(totalwagesMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(landMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(capitalMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(materialsMS)*log(grossotherMS/grossmilkMS)) 
                  + Regnskabsaar 
                  + milkingsystem 
                  + jersey 
                  + organic  
                  |   
                  + cell1  
                  + viable1  
                  + spore1 
                 + managerage 
                 + consultant 
                  ,data = pdata33 
                  , ineffDecrease = FALSE ,timeEffect = TRUE 
                  ,searchStep = sfaSearchStep, searchTol = sfaSearchTol, tol = sfaTol) 
summary(TLodfres2) 
lrtest(TLodfres2) # Small p-value indicate that there is (output oriented) technical inefficiency. 
lrtest(TLodfunres,TLodfres2) # proceeding with TLodfres2  
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### Translog: restricted model without managerage and consultant ### 
#################################################################### 
TLodfres3 <- sfa(-log(grossmilkMS) ~ log(grossotherMS/grossmilkMS)   
                  + I(0.5*log(grossotherMS/grossmilkMS)^2) 
                  + log(feedexpMS) + log(vetmedMS) + log(totalwagesMS)  
                  + log(landMS) + log(capitalMS) + log(materialsMS) 
                  + I(0.5*log(feedexpMS)^2) 
                  + I(0.5*log(vetmedMS)^2) 
                  + I(0.5*log(totalwagesMS)^2) 
                  + I(0.5*log(landMS)^2) 
                  + I(0.5*log(capitalMS)^2) 
                  + I(0.5*log(materialsMS)^2) 
                  + I(log(feedexpMS)*log(vetmedMS)) 
                  + I(log(feedexpMS)*log(totalwagesMS)) 
                  + I(log(feedexpMS)*log(landMS)) 
                  + I(log(feedexpMS)*log(capitalMS)) 
                  + I(log(feedexpMS)*log(materialsMS)) 
                  + I(log(vetmedMS)*log(totalwagesMS)) 
                  + I(log(vetmedMS)*log(landMS)) 
                  + I(log(vetmedMS)*log(capitalMS)) 
                  + I(log(vetmedMS)*log(materialsMS)) 
                  + I(log(totalwagesMS)*log(landMS)) 
                  + I(log(totalwagesMS)*log(capitalMS)) 
                  + I(log(totalwagesMS)*log(materialsMS)) 
                  + I(log(landMS)*log(capitalMS)) 
                  + I(log(landMS)*log(materialsMS)) 
                  + I(log(capitalMS)*log(materialsMS)) 
                  + I(log(feedexpMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(vetmedMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(totalwagesMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(landMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(capitalMS)*log(grossotherMS/grossmilkMS)) 
                  + I(log(materialsMS)*log(grossotherMS/grossmilkMS)) 
                  + Regnskabsaar 
                  + milkingsystem 
                  + jersey 
                  + organic  
                  |   
                  + cell1  
                  + viable1  
                  + spore1 
                  ,data = pdata33 
                  , ineffDecrease = FALSE ,timeEffect = TRUE 
                  ,searchStep = sfaSearchStep, searchTol = sfaSearchTol, tol = sfaTol) 
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summary(TLodfres3) 
lrtest(TLodfres3) # Small p-value indicate that there is (output oriented) technical inefficiency. 
 
lrtest(TLodfres2,TLodfres3) # small p-value, can reject null-hypothesis of no difference, choose 
TLodfres2 
 
### Skeewness  test ###  
library(moments) 
skewness(residuals(TLodfunres,asInData = TRUE)) # all are right skewed 
skewness(residuals(TLodfres1,asInData = TRUE)) 
skewness(residuals(TLodfres21,asInData = TRUE)) 
 
hist( residuals(TLodfunres), 15 )  
hist( residuals(TLodfres1), 15 ) 
hist( residuals(TLodfres2), 15 ) 
 
### Choosing the general model  ###  
TLodf <- TLodfres2 
summary(TLodf, extraPar = TRUE ) 
 
### Test the properties ###  
########################### 
# Coefficients of TLodf #  
aothero <- coef(TLodf)["log(grossotherMS/grossmilkMS)"] 
amilko <- 1-aothero 
aothertohero <- coef(TLodf)["I(0.5 * log(grossotherMS/grossmilkMS)^2)"] 
aothermilko <- amilkothero <- - aothertohero 
amilkmilko <- - amilkothero 
 
bfeedo <- coef(TLodf)["log(feedexpMS)"] 
bveto <- coef(TLodf)["log(vetmedMS)"] 
btoto <- coef(TLodf)["log(totalwagesMS)"] 
blando <- coef(TLodf)["log(landMS)"] 
bcapo <- coef(TLodf)["log(capitalMS)"] 
bmato <- coef(TLodf)["log(materialsMS)"] 
 
bfeedfeedo <-coef(TLodf)["I(0.5 * log(feedexpMS)^2)"] 
bfeedveto <- bvetfeedo <-coef(TLodf)["I(log(feedexpMS) * log(vetmedMS))"] 
bfeedtoto <- btotfeedo <-coef(TLodf)["I(log(feedexpMS) * log(totalwagesMS))"] 
bfeedlando <- blandfeedo <-coef(TLodf)["I(log(feedexpMS) * log(landMS))"] 
bfeedcapo <- capfeedo <-coef(TLodf)["I(log(feedexpMS) * log(capitalMS))"] 
bfeedmato <- bmatfeedo <-coef(TLodf)["I(log(feedexpMS) * log(materialsMS))"] 
 
bvetveto <-coef(TLodf)["I(0.5 * log(vetmedMS)^2)"] 
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bvettoto <- btotveto <-coef(TLodf)["I(log(vetmedMS) * log(totalwagesMS))"] 
bvetlando <- blandveto <-coef(TLodf)["I(log(vetmedMS) * log(landMS))"] 
bvetcapo <- bcapveto <-coef(TLodf)["I(log(vetmedMS) * log(capitalMS))"] 
bvetmato <- bmatveto <-coef(TLodf)["I(log(vetmedMS) * log(capitalMS))"] 
 
btottoto <-coef(TLodf)["I(0.5 * log(totalwagesMS)^2)"] 
btotlando <- blandtoto <-coef(TLodf)["I(log(totalwagesMS) * log(landMS))"] 
btotcapo <- bcaptoto <-coef(TLodf)["I(log(totalwagesMS) * log(capitalMS))"] 
btotmato  <- bmattoto <-coef(TLodf)["I(log(totalwagesMS) * log(materialsMS))"] 
blandlando <-coef(TLodf)["I(0.5 * log(landMS)^2)"] 
blandcapo <- bcaplando <-coef(TLodf)["I(log(landMS) * log(capitalMS))"] 
blandmato <- bmatlando <-coef(TLodf)["I(log(landMS) * log(materialsMS))"] 
bcapcapo <-coef(TLodf)["I(0.5 * log(capitalMS)^2)"] 
bcapmato  <- bmatcapo<-coef(TLodf)["I(log(capitalMS) * log(materialsMS))"] 
bmatmato <-coef(TLodf)["I(0.5 * log(materialsMS)^2)"] 
 
zfeedothero<- coef(TLodf)["I(log(feedexpMS) * log(grossotherMS/grossmilkMS))"] 
zfeedmilko <- - zfeedothero 
zvetothero <- coef(TLodf)["I(log(vetmedMS) * log(grossotherMS/grossmilkMS))"] 
zvetmilko <- - zvetothero 
ztotothero <- coef(TLodf)["I(log(totalwagesMS) * log(grossotherMS/grossmilkMS))"] 
ztotmilko <- - ztotothero 
zlandothero <- coef(TLodf)["I(log(landMS) * log(grossotherMS/grossmilkMS))"] 
zlandmilko <- - zlandothero 
zcapothero <- coef(TLodf)["I(log(capitalMS) * log(grossotherMS/grossmilkMS))"] 
zcapmilko <- - zcapothero 
zmatothero <- coef(TLodf)["I(log(materialsMS) * log(grossotherMS/grossmilkMS))"] 
zmatmilko<- - zmatothero 
 
### Input elasticities ### 
pdata33$efeedTLodf <- with(pdata33, bfeedo  
                           +bfeedfeedo * I(log(feedexpMS)) 
                           +bfeedveto * I(log(vetmedMS)) 
                           +bfeedtoto * I(log(totalwagesMS)) 
                           +bfeedlando * I(log(landMS)) 
                           +bfeedcapo *I(log(capitalMS)) 
                           +bfeedmato * I(log(materialsMS)) 
                           +I(zfeedothero * log(grossotherMS)) 
                           +I(zfeedmilko *log(grossmilkMS))) 
mean(pdata33$efeedTLodf) 
sd(pdata33$efeedTLodf) 
pdata33$evetTLodf <- with(pdata33, bveto  
                           +bvetveto * I(log(vetmedMS)) 
                           +bfeedveto * I(log(feedexpMS)) 
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                           +bvettoto * I(log(totalwagesMS)) 
                           +bvetlando * I(log(landMS)) 
                           +bvetcapo *I(log(capitalMS)) 
                           +bvetmato * I(log(materialsMS)) 
                           +I(zvetothero * log(grossotherMS)) 
                           +I(zvetmilko *log(grossmilkMS))) 
mean(pdata33$evetTLodf) 
sd(pdata33$evetTLodf) 
pdata33$etotTLodf <- with(pdata33, btoto  
                          +btottoto * I(log(totalwagesMS)) 
                          +bfeedtoto * I(log(feedexpMS)) 
                          +bvettoto * I(log(vetmedMS)) 
                          +btotlando * I(log(landMS)) 
                          +btotcapo *I(log(capitalMS)) 
                          +btotmato * I(log(materialsMS)) 
                          +I(ztotothero * log(grossotherMS)) 
                          +I(ztotmilko *log(grossmilkMS))) 
mean(pdata33$etotTLodf) 
sd(pdata33$etotTLodf) 
pdata33$elandTLodf <- with(pdata33, blando  
                          +blandlando * I(log(landMS)) 
                          +bfeedlando * I(log(feedexpMS)) 
                          +bvetlando * I(log(vetmedMS)) 
                          +btotlando * I(log(totalwagesMS)) 
                          +blandcapo *I(log(capitalMS)) 
                          +blandmato * I(log(materialsMS)) 
                          +I(zlandothero * log(grossotherMS)) 
                          +I(zlandmilko *log(grossmilkMS))) 
mean(pdata33$elandTLodf) 
sd(pdata33$elandTLodf) 
pdata33$ecapTLodf <- with(pdata33, bcapo  
                           +bcapcapo * I(log(capitalMS)) 
                           +bfeedcapo * I(log(feedexpMS)) 
                           +bvetcapo * I(log(vetmedMS)) 
                           +btotcapo * I(log(totalwagesMS)) 
                           +blandcapo *I(log(landMS)) 
                           +bcapmato * I(log(materialsMS)) 
                           +I(zcapothero * log(grossotherMS)) 
                           +I(zcapmilko *log(grossmilkMS))) 
mean(pdata33$ecapTLodf) 
sd(pdata33$ecapTLodf) 
pdata33$ematTLodf <- with(pdata33, bmato  
                           +bmatmato * I(log(materialsMS)) 
                           +bfeedmato * I(log(feedexpMS)) 
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                           +bvetmato * I(log(vetmedMS)) 
                           +btotmato * I(log(totalwagesMS)) 
                           +blandmato *I(log(landMS)) 
                           +bcapmato * I(log(capitalMS)) 
                           +I(zmatothero * log(grossotherMS)) 
                           +I(zmatmilko *log(grossmilkMS))) 
mean(pdata33$ematTLodf) 
sd(pdata33$ematTLodf) 
 
### Output elasticities ### 
pdata33$emilkTLodf <- with(pdata33, amilko  
                           + amilkothero * I(log(grossotherMS)) 
                           + zfeedmilko * I(log(feedexpMS)) 
                           + zvetmilko * I(log(vetmedMS)) 
                           + ztotmilko * I(log(totalwagesMS)) 
                           + zlandmilko * I(log(landMS)) 
                           + zcapmilko * I(log(capitalMS)) 
                           + zmatmilko * I(log(materialsMS))) 
mean(pdata33$emilkTLodf) 
sd(pdata33$emilkTLodf) 
pdata33$eotherTLodf <- with(pdata33, aothero   
                            + aothermilko * I(log(grossmilkMS)) 
                            + zfeedothero * I(log(feedexpMS)) 
                            + zvetothero * I(log(vetmedMS)) 
                            + ztotothero * I(log(totalwagesMS)) 
                            + zlandothero * I(log(landMS)) 
                            + zcapothero * I(log(capitalMS)) 
                            + zmatothero * I(log(materialsMS))) 
mean(pdata33$eotherTLodf) 
sd(pdata33$eotherTLodf) 
 
### summary statistics of distance elasticities ###  
summary(pdata33[,c( "efeedTLodf", "evetTLodf", "etotTLodf", "elandTLodf", 
                    "ecapTLodf","ematTLodf","emilkTLodf","eotherTLodf")]) 
 
range(pdata33$emilkTLodf+pdata33$eotherTLodf)  
 
range(pdata33$efeedTLodf + pdata33$evetTLodf+pdata33$etotTLodf+pdata33$elandTLdf 
      +pdata33$ecapTLodf + pdata33$ematTLodf) 
 
### Elasticity of scale ###  
pdata33$eScaleTLodf <- - rowSums (pdata33 [,c("efeedTLodf", "evetTLodf", "etotTLodf", 
"elandTLodf", "ecapTLodf","ematTLodf")]) 
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summary(pdata33$eScaleTLodf) 
table(pdata33$eScaleTLodf & pdata33$Regnskabsaar==2011) 
sd(pdata33$eScaleTLodf) 
sum( pdata33$eScaleTLodf> 2 | pdata33$eScaleTLodf < 0.5 )  
# all elasticities are within the interval 
 
# Monotonicity in input and output quantities. 
# Di(x,y) is non-decreasing in x if its first order derivatives with  
# respect to input quantities are non-negative  
 
# Monotonicity in input and output quantities. 
# Do(x,y) is non-decreasing in y  and non-increasing in x.  
 
sum(!pdata33$efeedTLodf <= 0) 
sum(!pdata33$evetTLodf  <= 0) 
sum(!pdata33$etotTLodf <= 0) 
sum(!pdata33$elandTLodf <= 0) 
sum(!pdata33$ecapTLodf  <= 0) 
sum(!pdata33$ematTLodf <= 0) 
 
pdata33$monoTLodf<-with(pdata33,efeedTLodf <= 0 & evetTLodf  <= 0 & etotTLodf <= 0 
                        & elandTLodf <= 0 & ecapTLodf  <= 0 & ematTLodf <= 0) 
 
# number that violates monotonicity assumption (input) 
sum( pdata33$monoTLodf )  
sum( !pdata33$monoTLodf )  
sum( pdata33$monoTLodf )/(sum( !pdata33$monoTLodf ) +sum(pdata33$monoTLodf))  
 
# Do(x,y) is non-decreasing in y  and non-increasing in x.  
sum(!pdata33$emilkTLodf >= 0) 
sum(!pdata33$eotherTLodf  >= 0) 
 
# number that violates monotonicity assumption (output) 
pdata33$monooutTLodf<-with(pdata33,emilkTLodf >= 0 & eotherTLodf  >= 0) 
sum( pdata33$monooutTLodf )  
sum( !pdata33$monooutTLodf )   
sum( pdata33$monooutTLodf)/(sum( !pdata33$monooutTLodf ) 
+sum(pdata33$monooutTLodf))  
 
# We can check if estimated Translog output distance is quasi-convex in input quantities (x)  
# and convex in output quantities (y) at the frontier. 
 
#### Quasi-convex in inputs ####  
# first-order partial derivatives, inputs 
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pdata33$ffeedTLodf <- with(pdata33, efeedTLodf * (1/I(log(feedexpMS)))) 
pdata33$fvetTLodf<- with(pdata33, evetTLodf * (1/I(log(vetmedMS)))) 
pdata33$ftotTLodf<- with(pdata33, etotTLodf * (1/I(log(totalwagesMS)))) 
pdata33$flandTLodf<- with(pdata33, elandTLodf * (1/I(log(landMS)))) 
pdata33$fcapTLodf<- with(pdata33, ecapTLodf * (1/I(log(capitalMS)))) 
pdata33$fmatTLodf<- with(pdata33, ematTLodf * (1/I(log(materialsMS)))) 
 
#values of elasticities with respect to output quantities for each observation 
pdata33$hmilkTLodf <- with ( pdata33, emilkTLodf * ( 1 / I( log( grossmilkMS ) ) ) ) 
summary ( pdata33$hmilkTLodf ) 
sum ( ( pdata33$hmilkTLodf ) < 0 )  
 
pdata33$hotherTLodf <- with ( pdata33, eotherTLodf * ( 1 / I( log( grossotherMS ) ) ) ) 
summary ( pdata33$hotherTLodf ) 
sum ( ( pdata33$hOtherTLodf ) < 0 )  
 
# quasi convex in inputs, valus of elasticity with respect to input quantities 
pdata33$ffeedfeedTLodf <-with(pdata33,(bfeedfeedo+efeedTLodf*efeedTLodf-1*efeedTLodf) 
                              /+(1/(feedexpMS*feedexpMS))) 
 
pdata33$ffeedvetTLodf <- fvetfeedTLodf <-with(pdata33, 
                              (bfeedveto+efeedTLodf*evetTLodf-0*efeedTLodf) 
                              /+(1/(feedexpMS*vetmedMS))) 
 
pdata33$ffeedtotTLodf <- ftotfeedTLodf <-with(pdata33, 
                              (bfeedtoto+efeedTLodf*etotTLodf-0*efeedTLodf) 
                              /+(1/(feedexpMS*totalwagesMS))) 
 
pdata33$ffeedlandTLodf <- flandfeedTLodf <-with(pdata33, 
                                (bfeedlando+efeedTLodf*elandTLodf-0*efeedTLodf) 
                                /+(1/(feedexpMS*landMS))) 
 
pdata33$ffeedcapTLodf <- fcapfeedTLodf <-with(pdata33, 
                                  (bfeedcapo+efeedTLodf*ecapTLodf-0*efeedTLodf) 
                                  /+(1/(feedexpMS*capitalMS))) 
 
pdata33$ffeedmatTLodf <- fmatfeedTLodf <-with(pdata33, 
                                  (bfeedmato+efeedTLodf*ematTLodf-0*efeedTLodf) 
                                  /+(1/(feedexpMS*materialsMS))) 
 
pdata33$fvetvetTLodf <- with(pdata33, 
                                  (bvetveto+evetTLodf*evetTLodf-1*evetTLodf) 
                                  /+(1/(vetmedMS*vetmedMS))) 
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pdata33$fvettotTLodf <- ftotvetTLodf <-with(pdata33, 
                                  (bvettoto+evetTLodf*etotTLodf-0*evetTLodf) 
                                  /+(1/(vetmedMS*totalwagesMS))) 
 
pdata33$fvetlandTLodf <- flandvetTLodf <-with(pdata33, 
                                    (bvetlando+evetTLodf*elandTLodf-0*evetTLodf) 
                                    /+(1/(vetmedMS*landMS))) 
 
pdata33$fvetcapTLodf <- fcapvetTLodf <-with(pdata33, 
                                    (bvetcapo+evetTLodf*ecapTLodf-0*evetTLodf) 
                                    /+(1/(vetmedMS*capitalMS))) 
 
pdata33$fvetmatTLodf <- fmatvetTLodf <-with(pdata33, 
                                      (bvetmato+evetTLodf*ematTLodf-0*evetTLodf) 
                                      /+(1/(vetmedMS*materialsMS))) 
 
pdata33$ftottotTLodf <- with(pdata33, 
                        (btottoto+etotTLodf*etotTLodf-1*etotTLodf) 
                        /+(1/(totalwagesMS*totalwagesMS))) 
 
pdata33$ftotlandTLodf <- flandtotTLodf <- with(pdata33, 
                          (btotlando+etotTLodf*elandTLodf-0*etotTLodf) 
                          /+(1/(totalwagesMS*landMS))) 
 
pdata33$ftotcapTLodf <- fcaptotTLodf <- with(pdata33, 
                                  (btotcapo+etotTLodf*ecapTLodf-0*etotTLodf) 
                                    /+(1/(totalwagesMS*capitalMS))) 
 
pdata33$ftotmatTLodf <- fmattotTLodf <- with(pdata33, 
                                      (btotmato+etotTLodf*ematTLodf-0*etotTLodf) 
                                        /+(1/(totalwagesMS*materialsMS))) 
 
pdata33$flandlandTLodf <- with(pdata33, 
                             (blandlando+elandTLodf*elandTLodf-1*elandTLodf) 
                             /+(1/(landMS*landMS))) 
 
pdata33$flandcapTLodf <- fcaplandTLodf <- with(pdata33, 
                                        (blandcapo+elandTLodf*ecapTLodf-0*elandTLodf) 
                                        /+(1/(landMS*capitalMS))) 
 
pdata33$flandmatTLodf <- fmatlandTLodf <- with(pdata33, 
                                        (blandmato+elandTLodf*ematTLodf-0*elandTLodf) 
                                               /+(1/(landMS*materialsMS))) 
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pdata33$fcapcapTLodf <- with(pdata33, 
                               (bcapcapo+ecapTLodf*ecapTLodf-1*ecapTLodf) 
                               /+(1/(capitalMS*capitalMS))) 
 
pdata33$fcapmatTLodf <- fmatcapTLodf <- with(pdata33, 
                                          (bcapmato+ecapTLodf*ematTLodf-0*ecapTLodf) 
                                               /+(1/(capitalMS*materialsMS))) 
 
pdata33$fmatmatTLodf <- with(pdata33, 
                             (bmatmato+ematTLodf*ematTLodf-1*ematTLodf) 
                             /+(1/(materialsMS*materialsMS))) 
 
# Hessian matrix for the first observation 
hm <- array( 0, c( 7, 7, nrow( pdata33 ) ) ) 
dim(hm) 
hm[ 1, 2, ] <- hm[ 2, 1, ] <- pdata33$ffeedTLodf#[ 1 ] 
hm[ 1, 3, ] <- hm[ 3, 1, ] <- pdata33$fvetTLodf#[ 1 ] 
hm[ 1, 4,] <- hm[ 4, 1, ] <- pdata33$ftotTLodf#[ 1 ] 
hm[ 1, 5, ] <- hm[ 5, 1, ] <- pdata33$flandTLodf#[ 1 ] 
hm[ 1, 6, ] <- hm[ 6, 1,] <- pdata33$fcapTLodf#[ 1 ] 
hm[ 1, 7, ] <- hm[ 7, 1, ] <- pdata33$fmatTLodf#[ 1 ] 
hm[ 2, 2, ] <- pdata33$ffeedfeedTLodf#[ 1 ] 
hm[ 3, 3, ] <- pdata33$fvetvetTLodf#[ 1 ] 
hm[ 4, 4, ] <- pdata33$ftottotTLodf#[ 1 ] 
hm[ 5, 5, ] <- pdata33$flandlandTLodf#[ 1 ] 
hm[ 6, 6, ] <- pdata33$fcapcapTLodf#[ 1 ] 
hm[ 7, 7, ] <- pdata33$fmatmatTLodf#[ 1 ] 
hm[ 2, 3, ] <- hm[ 3, 2, ] <- pdata33$ffeedvetTLodf#[ 1 ] 
hm[ 2, 4, ] <- hm[ 4, 2, ] <- pdata33$ffeedtotTLodf#[ 1 ] 
hm[ 2, 5, ] <- hm[ 5, 2, ] <- pdata33$ffeedlandTLodf#[ 1 ] 
hm[ 2, 6, ] <- hm[ 6, 2, ] <- pdata33$ffeedcapTLodf#[ 1 ] 
hm[ 2, 7, ] <- hm[ 7, 2, ] <- pdata33$ffeedmatTLodf#[ 1 ] 
hm[ 3, 4, ] <- hm[ 4, 3, ] <- pdata33$fvettotTLodf#[ 1 ] 
hm[ 3, 5, ] <- hm[ 5, 3, ] <- pdata33$fvetlandTLodf#[ 1 ] 
hm[ 3, 6, ] <- hm[ 6, 3, ] <- pdata33$fvetcapTLodf#[ 1 ] 
hm[ 3, 7, ] <- hm[ 7, 3, ] <- pdata33$fvetmatTLodf#[ 1 ] 
hm[ 4, 5, ] <- hm[ 5, 4, ] <- pdata33$ftotlandTLodf#[ 1 ] 
hm[ 4, 6, ] <- hm[ 6, 4, ] <- pdata33$ftotcapTLodf#[ 1 ] 
hm[ 4, 7, ] <- hm[ 7, 4, ] <- pdata33$ftotmatTLodf#[ 1 ] 
hm[ 5, 6, ] <- hm[ 6, 5, ] <- pdata33$flandcapTLodf#[ 1 ] 
hm[ 5, 7, ] <- hm[ 7, 5, ] <- pdata33$flandmatTLodf#[ 1 ] 
hm[ 6, 7, ] <- hm[ 7, 6, ] <- pdata33$fcapmatTLodf#[ 1 ] 
print(hm) 
print( hm[ , , 1 ] ) 
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hm <- array( 0, c( 7, 7, nrow( pdata33 ) ) ) 
pdata33$quasiConcTLodf <- apply( hm[ 1:2, 1:2, ], 3, det ) < 0 & 
  apply( hm[ 1:3, 1:3, ], 3, det ) > 0 & 
  apply( hm, 3, det ) < 0 
 
sum( pdata33$quasiConcTLodf ) # the quasi-convex assumption is violated in all observations 
table( pdata33[ , c( "monoTLodf", "quasiConcTLodf" ) ] ) 
 
# second-order partial derivatives wrt inputs (with output distance measure = 1 ) 
pdata33$hmilkmilk <- with(pdata33, (amilkmilko + emilkTLodf^2 - emilkTLodf) / 
grossmilkMS^2) 
pdata33$hmilkother <- with(pdata33, (amilkothero + emilkTLodf * eotherTLodf) / 
(grossmilkMS*grossotherMS)) 
pdata33$hotherother <- with(pdata33, (aothertohero + eotherTLodf^2 - eotherTLodf) / 
grossotherMS^2) 
summary( pdata33[ , c( "hmilkmilk", "hmilkother", "hotherother" ) ] ) 
 
# Hessian matrices 
hessianArray <- array( NA, c( 2, 2, nrow( pdata33 ) ) ) 
hessianArray[ 1, 1, ] <- pdata33$hmilkmilk 
hessianArray[ 2, 2, ] <- pdata33$hotherother 
hessianArray[ 1, 2, ] <- hessianArray[ 2, 1, ] <- pdata33$hmilkother 
print( hessianArray[ , , 1 ] ) 
 
# check convexity in outputs at the first observation 
diag( hessianArray[ , , 1 ] ) 
det( hessianArray[ , , 1 ] ) # first principal minor is negative 
 
# check convexity in outputs at all observations 
pdata33$concaveCDodf <- pdata33$hmilkmilk <= 0 
sum( pdata33$concaveCDodf ) 
 
#ratios between outputs 
plot( pdata33$grossmilkMS, pdata33$grossotherMS ) 
plot( pdata33$grossmilkMS, pdata33$grossmilkMS, log="xy" ) 
 
#### Calculating marginal effects of production variables ###  
pdata33$effo <- efficiencies(TLodf,asInData=TRUE) 
summary(pdata33$effo) 
hist(pdata33$effo ,50) 
effovertimeo<-tapply(pdata33$effo,pdata33$Regnskabsaar,mean) 
plot(effovertimeo,type="l",lty="dotted",col="blue",ylim=c(0.93,0.97), 
     ylab="TE%",xlab="Year 2011-2015",main="TE over time") 
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pdata33$totaloutp<-pdata33$grossmilk + pdata33$grossother 
plot(pdata33$yearcows, pdata33$effo, log="x") 
plot(pdata33$totaloutp, pdata33$effo, log="x") 
 
### Effects of production characteristics ###  
summary(TLodf) 
(exp(coef( TLodf )["Regnskabsaar2012"])-1)*100  
(exp(coef( TLodf )["Regnskabsaar2013"])-1)*100  
(exp(coef( TLodf )["Regnskabsaar2014"])-1)*100  
(exp(coef( TLodf )["Regnskabsaar2015"])-1)*100  
(exp(coef( TLodf )["milkingsystem2"])-1)*100  
(exp(coef( TLodf )["milkingsystem3"])-1)*100  
(exp(coef( TLodf )["jersey"])-1)*100  
(exp(coef( TLodf )["organic"])-1)*100  
 
#### Calculating marginal effects of z-variables ###  
pdata33$effzvaro <- efficiencies(TLodf, asInData=TRUE, margEff = TRUE) 
summary(pdata33$effzvaro)  
effzovertimeo<-tapply(pdata33$effzvaro,pdata33$Regnskabsaar,mean) 
plot(effzovertimeo,type="l",lty="dotted",col="blue",ylim=c(0.94,0.97), 
     ylab="TE%",xlab="Year 2011-2015",main="TE over time for z variables") 
 
METLodfz<-attr(pdata33$effzvaro, "margEff") 
summary(METLodfz) 
 
hist(METLodfz,50) 
plot(METLodfz,pdata33$grossmilkMS) 
s<-summary(METLodfz) 
 
# Efficiency over time  
 
# 2011  
summary(pdata33$Regnskabsaar==2011)  
summary(pdata33$effo>=0.95 & pdata33$Regnskabsaar==2011)  
summary(pdata33$effo>=0.90 & pdata33$effo<0.95 & pdata33$Regnskabsaar==2011)   
summary(pdata33$effo>=0.85 & pdata33$effo<0.90 & pdata33$Regnskabsaar==2011)   
summary(pdata33$effo>=0.80 & pdata33$effo<0.85 & pdata33$Regnskabsaar==2011)  
summary(pdata33$effo<0.80 & pdata33$Regnskabsaar==2011)  
 
# 2012 
summary(pdata33$Regnskabsaar==2012)  
summary(pdata33$effo>=0.95 & pdata33$Regnskabsaar==2012)  
summary(pdata33$effo>=0.90 & pdata33$effo<0.95 & pdata33$Regnskabsaar==2012)  
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summary(pdata33$effo>=0.85 & pdata33$effo<0.90 & pdata33$Regnskabsaar==2012)   
summary(pdata33$effo>=0.80 & pdata33$effo<0.85 & pdata33$Regnskabsaar==2012)   
summary(pdata33$effo<0.80 & pdata33$Regnskabsaar==2012)  
 
# 2013 
summary(pdata33$Regnskabsaar==2013)  
summary(pdata33$effo>=0.95 & pdata33$Regnskabsaar==2013)  
summary(pdata33$effo>=0.90 & pdata33$effo<0.95 & pdata33$Regnskabsaar==2013)   
summary(pdata33$effo>=0.85 & pdata33$effo<0.90 & pdata33$Regnskabsaar==2013)   
summary(pdata33$effo>=0.80 & pdata33$effo<0.85 & pdata33$Regnskabsaar==2013)  
summary(pdata33$effo<0.80 & pdata33$Regnskabsaar==2013) 
 
# 2014 
summary(pdata33$Regnskabsaar==2014)  
summary(pdata33$effo>=0.95 & pdata33$Regnskabsaar==2014)  
summary(pdata33$effo>=0.90 & pdata33$effo<0.95 & pdata33$Regnskabsaar==2014)   
summary(pdata33$effo>=0.85 & pdata33$effo<0.90 & pdata33$Regnskabsaar==2014)   
summary(pdata33$effo>=0.80 & pdata33$effo<0.85 & pdata33$Regnskabsaar==2014)   
summary(pdata33$effo<0.80 & pdata33$Regnskabsaar==2014)  
 
# 2015 
summary(pdata33$Regnskabsaar==2015)  
summary(pdata33$effo>=0.95 & pdata33$Regnskabsaar==2015)  
summary(pdata33$effo>=0.90 & pdata33$effo<0.95 & pdata33$Regnskabsaar==2015)   
summary(pdata33$effo>=0.85 & pdata33$effo<0.90 & pdata33$Regnskabsaar==2015)   
summary(pdata33$effo>=0.80 & pdata33$effo<0.85 & pdata33$Regnskabsaar==2015)   
summary(pdata33$effo<0.80 & pdata33$Regnskabsaar==2015) 
 
### Plotting development in efficiency for idf and odf ###  
pdata33$effi2011<-ifelse(pdata33$Regnskabsaar==2011,pdata33$eff,0) 
pdata33$effo2011<-ifelse(pdata33$Regnskabsaar==2011,pdata33$effo,0) 
plot(pdata33$effi2011,pdata33$effo2011,col="green",ylim=c(0.60,1),xlim=c(0.60,1), 
     ylab="TE% odf 2011",xlab="TE% idf 2011",main="TE% in 2011") 
abline(lm(pdata33$effi2011~pdata33$effo2011)) 
 
pdata33$effi2012<-ifelse(pdata33$Regnskabsaar==2012,pdata33$eff,0) 
pdata33$effo2012<-ifelse(pdata33$Regnskabsaar==2012,pdata33$effo,0) 
plot(pdata33$effi2012,pdata33$effo2012,col="green",ylim=c(0.60,1),xlim=c(0.60,1), 
     ylab="TE% odf 2012",xlab="TE% idf 2012",main="TE% in 2012") 
abline(lm(pdata33$effi2012~pdata33$effo2012)) 
 
pdata33$effi2013<-ifelse(pdata33$Regnskabsaar==2013,pdata33$eff,0) 
pdata33$effo2013<-ifelse(pdata33$Regnskabsaar==2013,pdata33$effo,0) 
plot(pdata33$effi2013,pdata33$effo2013,col="green",ylim=c(0.60,1),xlim=c(0.60,1), 
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     ylab="TE% odf 2013",xlab="TE% idf 2013",main="TE% in 2013") 
abline(lm(pdata33$effi2013~pdata33$effo2013)) 
 
pdata33$effi2014<-ifelse(pdata33$Regnskabsaar==2014,pdata33$eff,0) 
pdata33$effo2014<-ifelse(pdata33$Regnskabsaar==2014,pdata33$effo,0) 
plot(pdata33$effi2014,pdata33$effo2014,col="green",ylim=c(0.60,1),xlim=c(0.60,1), 
     ylab="TE% odf 2014",xlab="TE% idf 2014",main="TE% in 2014") 
abline(lm(pdata33$effi2014~pdata33$effo2014)) 
 
pdata33$effi2015<-ifelse(pdata33$Regnskabsaar==2015,pdata33$eff,0) 
pdata33$effo2015<-ifelse(pdata33$Regnskabsaar==2015,pdata33$effo,0) 
plot(pdata33$effi2015,pdata33$effo2015,col="green",ylim=c(0.60,1),xlim=c(0.60,1), 
     ylab="TE% odf 2015",xlab="TE% idf 2015",main="TE% in 2015") 
abline(lm(pdata33$effi2015~pdata33$effo2015)) 
 
####### PRICE INDEX ######## 
############################ 
 
### The different outputs within "grossother" and their shares ###  
# Bru_mark:  
# Korn (X100) 
pdata3333$corn<-with(pdata3333,X100/grossother) 
mean(pdata33$corn)   
# Frøafgrøder (X105) 
pdata33$seedcrops<-with(pdata33,X105/grossother) 
mean(pdata33$seedcrops)  
# Handelsroer (X110) 
pdata33$beets<-with(pdata33,X110/grossother) 
mean(pdata33$beets)  
# Kartofler (X115)  
pdata33$potatoes<-with(pdata33,X115/grossother) 
mean(pdata33$potatoes)  
# Raps (X120) 
pdata33$rape<-with(pdata33,X120/grossother) 
mean(pdata33$rape)  
# Ærter mv.(X125) 
pdata33$peas<-with(pdata33,X125/grossother) 
mean(pdata33$peas)  
# Andre industriafgrøder mv.(X130) 
pdata33$othercrops<-with(pdata33,X130/grossother) 
mean(pdata33$othercrops)  
# Gartneriafgrøder (X135) 
pdata33$horticulturalcrops<-with(pdata33,X135/grossother) 
mean(pdata33$horticulturalcrops)  
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# Energiafgrøder mv. (X145) 
pdata33$energycrops<-with(pdata33,X145/grossother) 
mean(pdata33$energycrops)  
 
# Bru_dyr_i_alt: 
# Kvæg (X175) 
pdata33$cattle<-with(pdata33,X175/grossother) 
mean(pdata33$cattle)  
# Svin (X180) 
pdata33$pigs<-with(pdata33,X180/grossother) 
mean(pdata33$pigs)  
# Fjerkræ (X185) 
pdata33$poultry<-with(pdata33,X185/grossother) 
mean(pdata33$poultry)  
# Pelsdyr (X190)  
pdata33$furanimals<-with(pdata33,X190/grossother) 
mean(pdata33$furanimals)  
# Får (X195) 
pdata33$sheep<-with(pdata33,X195/grossother) 
mean(pdata33$sheep)  
# Husdyr i øvrigt (X200) 
pdata33$otherlivestock<-with(pdata33,X200/grossother) 
mean(pdata33$otherlivestock)  
 
# Andre_landbrugsindt  
# Maskinstationsindtægter (X205) 
pdata33$machine<-with(pdata33,X205/grossother) 
mean(pdata33$machine)  
# Andre landbrugsindtægter - del 1 + del 2 (X210 + X212) 
pdata33$otheragriincome<-with(pdata33,(X210+X212)/grossother) 
mean(pdata33$otheragriincome)  
 
### The different elements within feed bought ###  
pdata33$expfeedbought<-with(pdata33,(X250+X255+X260)*-1) 
# Expenditure on corn 
mean(pdata33$X250*-1)/mean(pdata33$expfeedbought) 
# Expenditure on readymix 
mean(pdata33$X255*-1)/mean(pdata33$expfeedbought)  
# Expenditure on other feed bought 
mean(pdata33$X260*-1)/mean(pdata33$expfeedbought)  
 
 
# The different elements within materials and their shares #  
pdata33$materials <- with(pdata33, (X230+X235+X240+X245+ 
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                                  X275+X280+X310+X315+X320 +X325+X330+X375+X380)*-1) 
# Udsæd 
mean(pdata33$X230*-1)/mean(pdata33$materials)  
# Gødning 
mean(pdata33$X235*-1)/mean(pdata33$materials)  
# Planteværn. 
mean(pdata33$X240*-1)/mean(pdata33$materials)  
# Diverse vedrørende markbrug 
mean(pdata33$X245*-1)/mean(pdata33$materials)  
# Diverse vedrørende husdyrbrug 
mean(pdata33$X275*-1)/mean(pdata33$materials)  
# Skovomkostninger 
mean(pdata33$X280*-1)/mean(pdata33$materials)  
# Høst af korn og frøafgrøder 
mean(pdata33$X310*-1)/mean(pdata33$materials)  
# Optagning 
mean(pdata33$X315*-1)/mean(pdata33$materials)  
# Høst af grovfoder 
mean(pdata33$X320*-1)/mean(pdata33$materials)  
# Udbringning af husdyrgødning 
mean(pdata33$X325*-1)/mean(pdata33$materials)  
# Maskinstation diverse 
mean(pdata33$X330*-1)/mean(pdata33$materials)  
# Forsikringer 
mean(pdata33$X375*-1)/mean(pdata33$materials)  
# Diverse omkostninger 
mean(pdata33$X380*-1)/mean(pdata33$materials) 
 
### Input/output shares ###  
pdata2011<-subset(pdata33, Regnskabsaar==2011) 
pdata2012<-subset(pdata33, Regnskabsaar==2012) 
pdata2013<-subset(pdata33, Regnskabsaar==2013) 
pdata2014<-subset(pdata33, Regnskabsaar==2014) 
pdata2015<-subset(pdata33, Regnskabsaar==2015) 
 
# 2011 #  
pdata2011$allinput<-with(pdata2011, 
feedexp_2010level+vetmed_2010level+totalwages_2010level 
                       +land+capital+materials_2010level) 
mean(pdata2011$feedexp_2010level/pdata2011$allinput) 
mean(pdata2011$vetmed_2010level/pdata2011$allinput) 
mean(pdata2011$totalwages_2010level/pdata2011$allinput) 
mean(pdata2011$land/pdata2011$allinput) 
mean(pdata2011$capital/pdata2011$allinput) 
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mean(pdata2011$materials_2010level/pdata2011$allinput) 
 
mean(pdata2011$grossmilk_2010level/(pdata2011$grossmilk_2010level+pdata2011$grossother
_2010level)) 
mean(pdata2011$grossother_2010level/(pdata2011$grossmilk_2010level+pdata2011$grossother
_2010level)) 
 
# 2012 #  
pdata2012$allinput<-with(pdata2012, 
feedexp_2010level+vetmed_2010level+totalwages_2010level 
                         +land+capital+materials_2010level) 
mean(pdata2012$feedexp_2010level/pdata2012$allinput) 
mean(pdata2012$vetmed_2010level/pdata2012$allinput) 
mean(pdata2012$totalwages_2010level/pdata2012$allinput) 
mean(pdata2012$land/pdata2012$allinput) 
mean(pdata2012$capital/pdata2012$allinput) 
mean(pdata2012$materials_2010level/pdata2012$allinput) 
 
mean(pdata2012$grossmilk_2010level/(pdata2012$grossmilk_2010level+pdata2012$grossother
_2010level)) 
mean(pdata2012$grossother_2010level/(pdata2012$grossmilk_2010level+pdata2012$grossother
_2010level)) 
 
# 2013 #  
pdata2013$allinput<-with(pdata2013, 
feedexp_2010level+vetmed_2010level+totalwages_2010level 
                         +land+capital+materials_2010level) 
mean(pdata2013$feedexp_2010level/pdata2013$allinput) 
mean(pdata2013$vetmed_2010level/pdata2013$allinput) 
mean(pdata2013$totalwages_2010level/pdata2013$allinput) 
mean(pdata2013$land/pdata2013$allinput) 
mean(pdata2013$capital/pdata2013$allinput) 
mean(pdata2013$materials_2010level/pdata2013$allinput) 
 
mean(pdata2013$grossmilk_2010level/(pdata2013$grossmilk_2010level+pdata2013$grossother
_2010level)) 
mean(pdata2013$grossother_2010level/(pdata2013$grossmilk_2010level+pdata2013$grossother
_2010level)) 
 
# 2014 #  
pdata2014$allinput<-with(pdata2014, 
feedexp_2010level+vetmed_2010level+totalwages_2010level 
                         +land+capital+materials_2010level) 
mean(pdata2014$feedexp_2010level/pdata2014$allinput) 
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mean(pdata2014$vetmed_2010level/pdata2014$allinput) 
mean(pdata2014$totalwages_2010level/pdata2014$allinput) 
mean(pdata2014$land/pdata2014$allinput) 
mean(pdata2014$capital/pdata2014$allinput) 
mean(pdata2014$materials_2010level/pdata2014$allinput) 
 
mean(pdata2014$grossmilk_2010level/(pdata2014$grossmilk_2010level+pdata2014$grossother
_2010level)) 
mean(pdata2014$grossother_2010level/(pdata2014$grossmilk_2010level+pdata2014$grossother
_2010level)) 
 
# 2015 #  
pdata2015$allinput<-with(pdata2015, 
feedexp_2010level+vetmed_2010level+totalwages_2010level 
                         +land+capital+materials_2010level) 
mean(pdata2015$feedexp_2010level/pdata2015$allinput) 
mean(pdata2015$vetmed_2010level/pdata2015$allinput) 
mean(pdata2015$totalwages_2010level/pdata2015$allinput) 
mean(pdata2015$land/pdata2015$allinput) 
mean(pdata2015$capital/pdata2015$allinput) 
mean(pdata2015$materials_2010level/pdata2015$allinput) 
 
mean(pdata2015$grossmilk_2010level/(pdata2015$grossmilk_2010level+pdata2015$grossother
_2010level)) 
mean(pdata2015$grossother_2010level/(pdata2015$grossmilk_2010level+pdata2015$grossother
_2010level)) 
 
#### Mean of actual output/input values in 2010-values ####  
mean(pdata2011$grossmilk_2010level) 
mean(pdata2012$grossmilk_2010level) 
mean(pdata2013$grossmilk_2010level) 
mean(pdata2014$grossmilk_2010level) 
mean(pdata2015$grossmilk_2010level) 
mean(pdata2011$grossother_2010level) 
mean(pdata2012$grossother_2010level) 
mean(pdata2013$grossother_2010level) 
mean(pdata2014$grossother_2010level) 
mean(pdata2015$grossother_2010level) 
mean(pdata2011$feedexp_2010level) 
mean(pdata2012$feedexp_2010level) 
mean(pdata2013$feedexp_2010level) 
mean(pdata2014$feedexp_2010level) 
mean(pdata2015$feedexp_2010level) 
mean(pdata2011$vetmed_2010level) 
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mean(pdata2012$vetmed_2010level) 
mean(pdata2013$vetmed_2010level) 
mean(pdata2014$vetmed_2010level) 
mean(pdata2015$vetmed_2010level) 
mean(pdata2011$totalwages_2010level) 
mean(pdata2012$totalwages_2010level) 
mean(pdata2013$totalwages_2010level) 
mean(pdata2014$totalwages_2010level) 
mean(pdata2015$totalwages_2010level) 
mean(pdata2011$land) 
mean(pdata2012$land) 
mean(pdata2013$land) 
mean(pdata2014$land) 
mean(pdata2015$land) 
mean(pdata2011$capital) 
mean(pdata2012$capital) 
mean(pdata2013$capital) 
mean(pdata2014$capital) 
mean(pdata2015$capital) 
mean(pdata2011$materials_2010level) 
mean(pdata2012$materials_2010level) 
mean(pdata2013$materials_2010level) 
mean(pdata2014$materials_2010level) 
mean(pdata2015$materials_2010level) 
 
 
 


