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Abstract 
 
The increase of machinery size to gain work productivity gives concerns that spatial 
variability can not be addressed sufficiently when using PF methods. Data from soil 
electric conductivity sensors (EM38) and canopy light reflectance sensors (YARA N-
sensor) from fields in Denmark were analysed. The geo-statistical analysis included a 
determination of semi-variograms and the main parameters from it. In order to directly 
evaluate the matching of soil or crop variability to VRA machinery size a heterogeneity 
index was used. The index is called mean correlation distance (MCD). The index values 
varied highly between fields as well as between data types. Surprising was that the 
values from the crop data were almost always smaller than those from the soil sensor. 
The common machinery size of the concerning regions (20 m and more working width) 
did not fit to the spatial resolution of the crop plant needs. The conclusion is that on 
some fields an existing potential for optimising inputs can not be reached due to 
inappropriate machinery size. A decision tree based on variogram parameters is 
suggested to support farmers in matching machinery size to existing farm and field 
variability. 
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Introduction 
 
Advances in Precision Farming (PF) are not that high and clear as expected some years 
ago. Although the principles of PF are accepted by farmers and advisors a broad 
adoption of the technology has not occurred yet. Problematic issues are e.g. particularly 
decision support systems, recognition of temporal variation and environmental auditing 
(McBratney et al, 2005). Furthermore, due to the increase of size of machinery in 
general to gain work productivity a trade-off appears concerning matching the 
magnitude of the spatial variability when using PF methods. In some regions as in the 
southern part of the Baltic Sea short range soil variability is very common (Griepentrog 
& Kyhn, 2000). These soils exist for example in south western regions (northern 
Germany and Denmark) as well as in south eastern areas (Baltic countries).  
The emphasis of technological developments in agriculture has been on mechanization 
of field operations to increase work rates, productivity and economic efficiency. But 
large scale machinery seems to have drawbacks to match the general requirements for 
precision farming. A conflict of aims appears when (i) the application machinery needs 
to be powerful - means mainly big working width and high operation speeds - and when 



(ii) the potential of FP benefits increases with higher soil and crop heterogeneity at short 
ranges. 
Management zones seem to be a compromise often to make fields manageable. A 
‘management zone’ defines a sub-region of a field that has a relatively homogeneous 
combination of yield-limiting factors, for which a single rate of a specific crop input is 
appropriate. Soil information (topography, soil type, etc.) is valuable for management 
and can be used to create these more ‘stable’ management zones. However, crops 
respond to more than soil type, for example to climate, weeds, pests and disease and 
thus, yield patterns often vary from year to year. 
Especially sensor based nitrogen application in North Europe often has the aim to 
homogenize the crop to ease combine harvesting and to avoid crop logging due to over 
dosage. This strategy of crop management clearly reduces existing crop spatial 
variability. 
Although today it seems that online sensor systems are more successful than offline 
mapping systems. But soil describing and mapping should still be regarded as valuable 
crop management information. Online systems are favourable for highly temporal 
dynamic nutrients like nitrogen. Offline sampling is common for other properties like 
nutrient concentrations of P and K but also for soil organic matter (SOM). To 
discriminate between different plant stresses by using advanced online sensors is still a 
big challenge and therefore, direct soil nutrient sampling and mapping is necessary to 
ensure sufficient crop nutrient supply. 
Due to high spatial variability of the soils in Denmark and thus, for low geo-statistical 
ranges detailed mapping of these parameters using a grid sampling method is sometimes 
economically crucial. Webster and Oliver (2001) recommend spacing between soil 
samples of about half the effective range which definitely results in not acceptable 
economic viability. 
The approach to describe heterogeneous systems can be conducted on different levels of 
scale, for regions, fields, patches and even for individual plants of a crop stand ('plant 
level husbandry'). The absolute scale moves down from about 1 km to sub metre range. 
Examples for almost plant scale sampling are described in Solie et al (1999) and 
LaRuffa et al (2001). They propose that sensing areas of less than 2 m provide the most 
precise measure for crop nutrition needs, and that real-time, variable-rate sensor 
applicators should be designed to sense and treat at that scale. In contrast to that other 
authors like Taylor et al (2003) analysed uniformly treated fields and state that short 
range variability of less than 20 m is mainly caused by distribution errors of application 
technology and that current applicators in size are suitable for variable rate dosing. 
However, it seems a general trend that if sensing systems are available the sensing 
resolution goes up and plant scale husbandry seems possible in the near future. Today in 
PF the mapping approach (soil controlled) or sensor approach (crop controlled) or an 
overlay of these systems (Ostermeier et al. 2006; Berntsen et al. 2006) are even 
commercially available. 
The 'Integral Scale' and 'Mean Correlation Distance' (MCD) was first defined by Russo 
& Jury (1987) and Han et al (1994). The purpose was to optimise the size of sampling 
grids or the number of sampling points per defined area depending on the magnitude of 
field condition variability. The MCD is especially suitable here in this study because it 
considers not only nugget, sill and range but, furthermore, the characteristic of the 
variogram function below range to define a maximum area length which is needed to 



describe the concerning variability. This ensures reliable index values for a variety of 
functions as for example spherical, exponential and gaussian. 
The authors of this paper hypothesise that today for many variable rate applications the 
machinery size (working width) is not appropriate and hence not able to address the 
existing spatial variability of plant needs across a field. This means that an existing 
potential for optimisation of inputs can not be utilised, although this potential can be 
measured by sensors and described after the data analysis. 
 
Materials and Methods 
 
Fields and fertilisation strategy 
Geo-referenced soil electric conductivity (SEC) data as well and canopy light reflection 
(CLR) data for 8 Danish agricultural fields were provided by the Danish Agricultural 
Advisory Service (DAAS). Although the number of fields is relatively small they are 
located within different regions in Denmark. Adapted to field sizes and mechanisation 
the working width of the tramline systems varied from 12 to 34 m. That gave a lateral 
resolution of the same for the CLR data and of half that value for the SEC data, because 
the EM38 sensor was pulled across the field within and between the tramlines. The SEC 
measurements took place at maximum water holding capacity (field capacity) during 
winter time. The CLR data were collected by a YARA N-sensor in early spring during 
2nd application of nitrogen which was varied in dose rate. The 1st nitrogen application 
after winter time was applied with a uniform dose rate which is common in Denmark 
even within PF farming strategies. 
 
Table1. Basic field data and sampling patterns for all fields for soil electric conductivity 
(SEC) and canopy light reflection (CLR) measurements 
 
Field / Parameter Area 

(ha) 
n Track 

spacing 
(m) 

Point 
spacing 

(m) 
Egeskov / SEC 

CLR 
24.3493 

" 
3902 
5363 

11.4 
24.1 

5.8 
2.0 

Nibe / SEC 
CLR 

34.9229 
" 

2967 
6928 

20.2 
20.5 

6.1 
2.9 

Odder / SEC 
CLR 

10.0685 
" 

711 
1373 

17.3 
34.7 

5.9 
2.1 

Spørring / SEC 
CLR 

1.1198 
" 

220 
424 

6.4 
12.7 

7.5 
2.1 

Tappernøje / SEC 
CLR 

3.1668 
" 

360 
651 

15.5 
27.6 

5.9 
1.7 

Tommerup / SEC 
CLR 

4.6846 
" 

774 
1898 

12.3 
12.0 

5.4 
1.9 

Viborg / SEC 
CLR 

1.0932 
" 

168 
623 

14.9 
13.7 

5.3 
1.5 

Aarhus / SEC 
CLR 

1.8216 
" 

283 
760 

15.8 
16.3 

4.7 
1.6 

 
 



Data acquisition 
Soil sensing: The em38-sensor provides fast and non-destructive measurements of the 
apparent soil electric conductivity (SEC). The SEC is strongly correlated with soil 
mineral particle sizes (clay content) if measured at field capacity. The standard 
GEONICS EM38 is operated in either the vertical or horizontal mode (GEONICS, 
Mississauga, Canada). SEC was measured to a depth of approximately 1.50 m (vertical 
mode) with a GEONICS EM38DD sensor mounted on a sledge and pulled by a light 
vehicle. The sledge was equipped with a Global Positioning System (GPS) and a data 
logger on the motorbike. The spatial track data patterns across the fields were different 
(Tab. 1) and varied according to the tramline width. The size of the sampling area is 
relatively small and around 1 to 2 m2. The sampling rate was at 1 Hz. 
Crop sensing: The YARA N-sensor is a commercially available system (YARA 
International ASA, Norway) that measures canopy light reflection (Reusch 2003). 
Selected bandwidth are used to compute a parameter which correlates with the crop 
biomass or crop chlorophyll density of the scanned spot. The system assumes that 
estimated biomass correlates with the crop’s nitrogen demand and applies nitrogen 
fertiliser in real-time on-the-go. The N-sensor measurements were logged in early May, 
just before the second N-application similar as described in Berntsen et al. (2006). 
The spatial track data patterns across the fields are the same as the tramlines used for all 
application passes (Tab. 1). The size of the sampling area of the N-Sensor is relatively 
big and depends also on mounting height above ground of the sensor on top of the 
tractor cabin. The area was 20 m2 as a sum of 4 simultaneously scanned and averaged 
spots pointing around the vehicle. 
 
Data analysis 
We used the software SURFER (Golden Software) for the interpolation, mapping and 
variogram computation. The model fitting was conducted using SURFER’s autofit-
function corrected by manual parameter changes. The lag direction for determining the 
variogram parameters was chosen to be in the direction of driving (not omni-
directional). The reason was that most of the field data were retrieved from so called 
strip trials with long tracks instead of quadratic plots. Only the fields Egeskov and Nibe 
were relatively big (more than 20 ha) and of almost quadratic shape. EXCEL 
(Microsoft) integrated the model functions and calculated the Mean Correlation 
Distance (MCD). 
The MCD is defined by Han et al (1992) as follows: 
 

dh
S

hSMCD
h

∫
−

=
max

0

)(γ      (1) 

Where 
maxh : range (m) 

    S : sill 
     h : lag distance 

)(hγ : variogram function or model 
 



Results and Discussion 
 
The results from the geo-statistical analysis for all 8 fields are presented in Table 2 and 
3. For both the soil as well as the crop data the nugget values were small or even 0. 
Only for field Nibe the nugget-sill ratio was high for the CLR data due to a high nugget 
value. A low nugget-sill ratio indicates a large degree of spatial correlation. 
The variogram ranges also showed a clear characteristic because the values from the 
SEC were always higher than those calculated from the CLR data. Spørring was the 
only field where soil and crop properties gave almost the same range value. 
Other geo-statistical soil property investigations showed similar results for Danish fields 
(Albrechtsen et al, 2000, Greve et al, 2003).  
The MCD determination from SEC and CLR data resulted also in different values 
mainly because the range values already showed big differences. The MCD values for 
the SEC data varied from 16 to 96 m and for the CLR data from 15 to 80 m. Only one 
field (Spørring) had a MCD value less than 20 m in soil sensing but there were 5 fields 
(Spørring, Tappernøje, Tommerup, Viborg and Aarhus) which showed a MDC less than 
20 m for the measured crop properties. 
 
Table 2. Geo-statistical analysis of Soil Electric Conductivity (SEC) including the Mean 
Correlation Distance (MCD) for 8 Danish agricultural fields 
 

 Nugget 
(mS/m)2 

Sill
(mS/m)2

Nugget/
Sill Ratio 

(%)

Range 
(m)

Model MCD
(m)

Egeskov 4.0 32.0 12.5 210 Spher. 96
Nibe 2.0 35.0 5.7 189 Spher. 78
Odder 1.0 18.5 18.5 140 Spher. 58
Spørring 0.1 3.5 2.9 39 Spher. 16
Tappernøje 2.0 - - - Linear -
Tommerup 1.0 27.0 3.7 90 Expo. 59
Viborg 0.7 6.4 10.9 64 Spher. 29
Aarhus 0.0 270.0 0.0 135 Expo. 86

 
Table 3. Geo-statistical analysis of Canopy Light Reflection (CLR) including the Mean 
Correlation Distance (MCD) for 8 Danish agricultural fields 
 

 Nugget 
(-) 

Sill
(-)

Nugget/
Sill Ratio 

(%)

Range 
(m)

Model MCD
(m)

Egeskov 0.00 0.315 0.0 56 Spher. 22
Nibe 0.38 0.780 48.7 75 Spher. 52
Odder 0.00 0.260 0.0 124 Spher. 80
Spørring 0.00 0.199 0.0 41 Spher. 16
Tappernøje 0.00 0.001 0.0 44 Spher. 17
Tommerup 0.00 0.360 0.0 38 Spher. 15
Viborg 0.00 0.600 0.0 36 Spher. 14
Aarhus 0.00 0.158 0.0 40 Spher. 16

 



Surprising is the low range variability for the CLR systems compared with the SEC 
systems although the soil sensor had a much higher resolution and the crop sensor even 
operated in a moving average mode because sampling overlaps occur due to relatively 
high sampling size and sampling frequency. But obviously the variability of the crop 
biomass is much higher than for the soil clay content as measured by the soil sensor. 
There are no publications about spatial analysis of CLR data except from Thiessen 
(2002). The measuring and parameter methodology is almost the same as described in 
this study. The main difference is the location (Northern Germany) and the sensor 
sampling resolution of about 1 m2. The value range for the MCD was similar although 
the sampling spot size was much smaller. Furthermore Thiessen (2002) found out that 
the crop spatial variability is not constant during the vegetation period. He showed that 
the variability decreased in range and MCD as vegetation period progressed. It can be 
concluded from those results that the crop stand properties became more uniform. 
The authors assume that variable rate application (VRA) technology is appropriate for 
these fields because both soil as well as crop parameters are spatially not uniform. The 
sill values are high and nugget-sill ratios are low which shows that there are almost no 
random errors and effects. In order to address this described variability the distribution -
machinery should be able to target fertiliser with varying dose rates to particular field 
spots. By using currently common VRA machinery in Denmark of working width 
around 20 m and more seems not to be recommendable for MCDs lower than 20 m. The 
working width should be adapted to the range of variability means should have the same 
value as the concerning MCD. The common uniform as well as variable rate applicators 
of fertiliser are centrifugal disc spreaders (Griepentrog & Persson, 2000).  
 

 
 
Figure 1. Decision support to assess applicability of VRA machinery based on 
variogram parameters 
 
High random and short range variability could be addressed by application technology 
with very high resolution e.g. of sub metre width. This could be achieved using a 
sprayer with nozzle switching or similar. Some modern pneumatic fertiliser spreaders 



have controllable dose rates for each outlet. This allows splitting the boom into sub-
sections. 
To support farmer’s decisions we suggest that before considering to invest in VRA 
technology or to implement PF methodologies to farms or fields to analyse either soil 
data or crop data derived form today easy available sensors as EM38 or YARA N-
sensor. Information from both systems give a good estimates about the existing farm or 
field spatial variability by using semi-variogram parameters. In Figure 1 a decision tree 
is shown to support and simplify this process. A similar but more general scheme was 
developed by McBratney & Pringle (1999). They suggested to base decisions on 
average variograms as threshold values. The authors of this paper suggest to use the 
MCD values directly as an indicator to decide whether technology matches the 
variability or not. 
The MCD can also give useful information when calculated from application maps. An 
application map is the result of a crop management recommendation based on soil 
sampling or other information sources. This recommendation could have had the aim to 
average short range variability e.g. by introducing management zones. However, the 
application map can be regarded as the interface between crop management 
recommendations and the technology following to execute this task. An MCD 
calculated from the application map can have the aim to show that the existing 
technology fits or to determine what size the technology should have. If existing 
technology can not be used then a conclusion for the farmer could be not to apply PF 
methods to his farm or for a particular field. 
 
Conclusions 
 
The statistical analysis of soil and crop data showed that short range variability exists 
which is smaller than commonly used application machinery with particular working 
width. The proposed MCD index can support the farmer in helping him to evaluate farm 
and field heterogeneity in relation to machinery size.  
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