Yield and protein data from recent years can improve N-fertilization practices

Julie Therese Christensen

Thursday January 11th

Promilleafgiftsfonden for landbrug

Agenda

- Motivation and background for study
- Method
- Results
 - Field experiments (mainly N, with a small remark about P)
 - Data recorded in MarkOnline
- Recommendations and future perspectives

Motivation for study

In the years with supoptimal N-norm a lower protein percent was observed

Excising grain samples:

- When farmers sell a batch of grain
- However, if not for bread or malt barley, protein commonly not measured

Aim:

- Explore the relationship between protein percentage, yield, and nitrogen application and identify threshold values
- Improve future nitrogen fertilization practices

Can yield and protein data from recent years improve N-fertilization practices?

Background

- Nitrogen application rates highly affects protein content
 - Higher N rates = higher protein content
- From 1999 to 2015 nitrogen fertilization norms were below optimum
 - Decreasing protein content in harvested grain
- There has been conducted over 1,000 field experiments in winter wheat with increasing nitrogen application: time to step back and have a look

Development in protein content in harvested winter wheat

SE

GES

Method

Comprehensive dataset:

- Time period: 1987-2020
- 1,090 N rate experiments in winter wheat
- Yield and protein percentage

Data cleaning:

- Experiments with missing data/ errors removed
- Only treatment with N-rates between 50 and 250 kg N/ha used
- A total of 3757 observations in a total of 752 experiments

Correlation between relative yield and protein

Small differences in optimum for different yield intervals

Recommendations for winter wheat

Protein %	
Below 9.5 %	High likelihood that the crop has been undersupplied with nitrogen Risk of yield loss
9.5 % to 11.5 %	The nitrogen application has likely been sufficient
Above 11.5 %	Highly likely that the crop has received an excess of nitrogen

Using protein percent: How far away from optimum N?

- In each N-rate experiment optimum is calculated
- In each N-treatment the distance measured in kg N/ha is calculated
- For every 10 kg N/ha extra the protein percent will increase 0,17 %

Yield and protein registered at field level

Data:

- Yield and protein content registered at field level for winter wheat
- Data registered in MarkOnline
- From 2018-2021
- A total of 282 field with registered yield data
 - Only 121 fields left after cleaning of data
- Nitrogen source: both mineral fertilizers and animal manure

Registered yield and protein content

Nitrogen rate and protein percent

- No increase in protein percent with increasing N rates
- Is the quality of the registration of N rate at field level good enough?

Phosphorus in grain analysis

- 32 field trials in spring barley with and without phosphorus fertilization
- Years: 2020-2022
- Phosphorus content in grain analysis can reveal if the plants have lacked phosphorus during the growing season

Conclusion

Initial question:

Can yield and protein data from recent years improve N-fertilization practices?

Answer:

Yes

Conclusions

- Clear potential to make better use of excising grain samples
- Information about protein percent represents valuable knowledge to improve nitrogen fertilization planning
 - <9,5%: apply more N</p>
 - 9,5-11,5 %: sufficient supply
 - >11,5 %: decrease N supply
- Phosphorus content in grain can reveal lack of phosphorus supply
- Can be integrated in future tools:
 - Especially if grain analysis becomes more common
 - There is still a lack in registration of yield and protein levels

Future perspectives for using grain analyses

- Integrated part of fertilization planning
 - In future include other nutrients
- Farmer evaluation of fertilization strategy
 - Look at more years
 - Remember: other factors can affect protein and yield levels e.g. drought periods
- Visualization of fields
 - Red: Too high nitrogen application
 - Green: Optimal nitrogen application
 - Yellow: Too low nitrogen application

ANAKORN – new projekt

- Inspired by the work done in U.K. on grain analysis and in the Field trials in DK
- Use new technology (LIBS) to make grain analysis cheaper
- Facilitate logistics and build a decision support system for grain analysis
- Goal: to improve the following years fertilization plans

Harvest Analysis to transform Nutrition Management Tamara Fitters, ADAS, UK

www.adas.uk

Management

HARVEST ANALYSIS ... Two Aims

1. Balances & Efficiencies

Nutrient, kg/ha

2. Diagnosing final Deficiencies *or* Excesses

Nutrient offtake =

Suggested Field Nutrient Accounting

	Macro-Nutrients						Micro-Nutrients							
	units	N	P	K	Mg	S	Ca	units	Fe	Mn	Zn	Cu	B	Мо
Demand budget @ yield (t/ha) 6.5	kg/ha	135	20	90	15	15	15	g/ha	510	260	235	120	10	10
Soil Supply														
Soil analysis		-	23	307	280	-	-	mg/l	-	-	-	-	-	-
Soil Index	Index	-	2+	3	5	-	-	Index	-	-	-	-	-	-
Total Nutrients Applied	kg/ha	156	0	0	1	57	0	g/ha	0	3,000	0	0	>0	0
In Organic Manures (totals*)	kg/ha	0	0	0	0	0	0	g/ha	0	0	0	0	0	0
In Fertilisers & Sprays	kg/ha	156	0	0	1	57	-	g/ha	-	3,000	-	-	Yes	-
Crop Capture with yield (t/ha) of 7.5	kg/ha	189	50	121	19	39	13	g/ha	463	241	353	148	8	15
Demand difference from b	Demand difference from b / Analysis Leaf analysis at Growth Stag		+30	+31	+4	+24	-2	g/ha	-48	-19	+118	+28	-2	+5
Leaf analysis at Growth Stag			0.38	2.12	0.14	0.37	0.76	ррт	116	67	21	6	8.6	1.5
Grain analysis	علىدز	30	0.30	0.51	0.11	0.13	0.03	ррт	32	21	39	5	0.9	0.8
Harvest offtakes			20	66	9	12	8	g/ha	335	187	302	91	7	10
Soil Nutrient Balance	kg/ha	-12	-20	-66	-9	45	-8	g/ha	-335	2,813	-302	-91	NA	-10
All values are for elements. For Oxides (e.g. P_2O_5) multiply by:		1.0	2.3	1.2	1.7	2.5	1.0		1.0	1.0	1.0	1.0	1.0	1.0

Evaluating Nutrient Concentrations:

mid value

Diagnosing Final Sufficiency ... by Benchmarking

tical value centration your value vour value vour value

Sufficient

80

Nutritior

middle 50%

Example Grain Nutrient Benchmarking report

Harvest Analysis supports Farm Learning: from last year to the next

UK Farmers' & Advisors' – **Main aims of crop checking:**

Harvest Analysis is new: it needs collaboration

Summary: UK conclusions

Average Value =

€000s / field !

Any Manager must check OUTPUTS as well as INPUTS

- Farms do check fertilisers .. they must also check ORGANIC INPUTS
- Plus Nutrient Harvests

Nutrient HARVESTS vary a lot: CHECKS are ESSENTIAL

• Soil, leaf, & canopy checks are helpful, but secondary to final outputs

Accurate harvest checking requires laboratory ANALYSIS & BENCHMARKING: Farms must accept cost, & data sharing Cost = Cost / field

- Cereals, Oilseeds & Pulses validated in UK
- Potatoes or Maize .. to be validated.

Funded by the European Union K UK Research and Innovation

Thank you

Tamara.fitters@adas.co.uk

